An Evolutionary Approach to Credit Scoring

Prof. Shinn-Ying Ho

Department of Biological Science and Technology and Institute of Bioinformatics
National Chiao Tung University

e-mail: syho@mail.nctu.edu.tw
Tel.:886-3-5712121-56905
Outline

- Introduction
- Problem Definition and Related Work
- Design of Accurate Credit Scoring Model
 - Intelligent Genetic Algorithm (IGA)
 - The Evolutionary Design Approach
- Experimental Result
- Discussions
- Conclusions
In 1988, the Basel Committee on Banking Supervision adopted a capital adequacy framework for internationally active commercial banks. The Accord specifically created capital requirements for the credit risk in banking assets.

The framework includes three pillars:
- Minimum capital requirements
- Supervisory review
- Market discipline
The new accord contains several revisions that should better align capital requirements with actual bank risk included market and credit risk.

In order to fulfill the requirements of complex risk analysis, the computational intelligence plays an important role for developing advanced risk management system.
Introduction

- Importance of Credit Scoring
 - Between 1985 and 1996, the number of personal bankruptcy cases filed in US rose from 341,000 to 1.1 million. The rate of bankruptcy per 1000,000 adults increases from 203 to 596 (Nelson, 1999).
 - However, the competition in the consumer credit market has become intense.
 - Minimizing the credit risk can increase the total gain.
Introduction

- What is Credit Scoring
 - Evaluate the credit worthiness of customers and predict the possibility of default loans.

- Applications
 - Financial institutions
 - Insurance institutions
 - Sell markets
Credit Scoring vs. Credit Rating

- Both of them measure the credit worthiness of customers.
- Credit Scoring
 - Predict the worthiness, and then accept the loan application for “good credit” or reject it for “bad credit”.
- Credit Rating
 - Classify the worthiness into levels such as “AAA”, “AA”, and “A”, and assign different loan quota for each level.
Introduction

- Advantages of Machine Learning Approaches
 - Eliminate the risk from human defect.
 - Build customize models according to the constitutions of banks.
 - The banks can rebuild the model themselves when the environment changed.
Most of the machine learning approaches for credit scoring aim on the classification accuracy but lack of interpretation of learned models.

In this study, we proposed an evolutionary approach to designing a fuzzy classifier for solving credit scoring problems.

The proposed fuzzy rule-based classifier can provide both high explanation ability and high accuracy.

All design parameters of the fuzzy classifier are optimized using an inheritance intelligent genetic algorithm.
Problem Definition

Goal
- Establish an accurate scoring model according to personal information and historical records of existing customers.
- Use it to predict customers’ credit worthiness.

The characteristics of credit scoring
- Two classes: “good credit” and “bad credit”
- The number of “good credit” samples may be much more than that of “bad credit” ones.
- Different misclassification cost for the two classes.
Problem Definition

- Type 1 error: classify “bad credit” samples as “good credit”
- Type 2 error: classify “good credit” samples as “bad credit”
- Type 1 error is more critical than type 2 error.
- The cost matrix

<table>
<thead>
<tr>
<th>Predict class y</th>
<th>Predict class \hat{y}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Bad</td>
<td>5</td>
</tr>
</tbody>
</table>
Problem Definition

- Let $X = \{(x_1, y_1), \ldots, (x_m, y_1)\}$ be the set of m training samples. Each $x_i \in \mathbb{R}^n$ represents an n-D feature vector, and $y_i \in \{0, 1\}$ is its real class (0: good, 1: bad).

- The objective is to design a decision function $\hat{y} = f(x)$, $\hat{y} \in \{0, 1\}$ that minimize the total cost:

$$\min \sum_{i=1}^{m} \text{Cost}(y_i, \hat{y}_i)$$
Problem Definition

- Scoring functions
 - Design of a function \(s(x) \) that maximize the between-group variance relative to the within-group variance.
 - “Good credit” samples have higher scores than “bad credit” ones.
 - The decision function \(f(x) \) is defined as

\[
 f(x) = \begin{cases}
 1, & \text{if } s(x) < Z \\
 0, & \text{if } s(x) \geq Z
 \end{cases}
\]

where \(Z \) is the threshold minimized the cost.
Related Work

- Human Experience
 - Scorecard
- Statistic Method
 - Logistic Regression
 - Discriminant Analysis
- Non-parametric Models
 - K-Nearest Neighbor Rule
 - Decision Tree
 - Neural Network

Institute of Bioinformatics, NCTU
<table>
<thead>
<tr>
<th>Models</th>
<th>Accuracy</th>
<th>Interpretable</th>
<th>Quantitative Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scorecard</td>
<td>Poor</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Statistic methods</td>
<td>Poor</td>
<td>No</td>
<td>Yes (DA)</td>
</tr>
<tr>
<td>k-NN</td>
<td>Good</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Decision trees</td>
<td>Good</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Neural networks</td>
<td>Good</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Fuzzy rule-based classifier</td>
<td>Good</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Scorecard

项目

<table>
<thead>
<tr>
<th>年龄</th>
<th>贷款金额</th>
<th>家庭状况</th>
<th>金融机构往来情形</th>
<th>信用卡往来情形</th>
<th>信用卡卡龄</th>
</tr>
</thead>
</table>
| 24歳以下 | 120万元以上 | 1. 本人年收入低于120万元
2. 本人与配偶合计低于120万元
3. 本人与配偶合计低于60万元 | 1. 银行存款往来半年以上，且平均存款额达二十五万元以上。
2. 银行存款往来半年以上，且平均存款额达十万元以上。
3. 银行存款往来半年以上，且平均存款额达五万元以上。
4. 银行存款往来半年以上，且平均存款额达五万元以下。 | 1. 持有信用卡1~2张。
2. 持有信用卡2~3张。 | 1. 未满一年。
2. 持有信用卡1~2年。
3. 持有信用卡2~3年。
4. 持有信用卡3~5年。 |
| 25~35歳 |
| 36~45歳 |
| 46~50歳 |
| 50岁以上 |

评分依据

- 24歳以下
- 25~35歳
- 36~45歳
- 46~50歳
- 50岁以上

住宅(房地产)状况

- 本人或配偶之房屋未设定抵押权
- 本人或配偶之房屋已设定抵押权给银行
- 本人或配偶不拥有不款项

家庭状况

- 已婚，有子女
- 已婚，无子女
- 未婚

(From http://tw.money.yahoo.com/edu/credit.html)
Scorecard

Score and Rating

<table>
<thead>
<tr>
<th>分數級距</th>
<th>等級</th>
<th>(申貸金額)消費性貸款授信額度</th>
</tr>
</thead>
<tbody>
<tr>
<td>95分(含)以上</td>
<td>您的信用頂尖!為銀行樂於服務的白金尊榮客戶</td>
<td>申貸金額之每年攤還本息，不超過年收入之50%均可承作</td>
</tr>
<tr>
<td>85分(含)以上</td>
<td>您的信用卓越!為銀行樂於洽辦的超優質客戶</td>
<td>申貸金額之每年攤還本息，不超過年收入之45%均可承作</td>
</tr>
<tr>
<td>75分(含)以上</td>
<td>您的信用良好!為銀行樂於服務的優質客戶</td>
<td>申貸金額之每年攤還本息，不超過年收入之40%均可承作</td>
</tr>
<tr>
<td>65分(含)以上</td>
<td>您的信用正常!是銀行樂於服務的客戶</td>
<td>申貸金額之每年攤還本息，不超過年收入之35%均可承作</td>
</tr>
<tr>
<td>55分(含)以上</td>
<td>您的信用尚待培養建立!未來值得期待</td>
<td>申貸金額之每年攤還本息，不超過年收入之25%均可承作</td>
</tr>
</tbody>
</table>

(From http://tw.money.yahoo.com/edu/credit.html)
Scorecard

Drawbacks

- Static score card system cannot response in real time when the environment changed
- No “generic scorecard” is suitable for all banks
- The design depends on the scorecard providers. The cost is very high and the banks have less autonomy.
Logistic Regression

Let \(p = P(y=1) \) be the probability of “bad credit” and its linear regression model is defined as follows:

\[
\ln \frac{p}{1-p} = g(x) = a_0 + a_1 x_1 + ... + a_n x_n
\]

- If \(g(x) > 0 \) (i.e. \(p > 0.5 \)), then \(y = 1 \); otherwise, \(y = 0 \).

- \(g(x) \) can be a linear or a non-linear model.
The discriminant analysis derives a linear combination of input variables

\[Z = a_1 x_1 + a_2 x_2 \ldots + a_n x_n \]

where \(Z \) is the discriminant score.

Maximize the between-group variance relative to the within-group variance.
Discriminant Analysis

Optimal discriminant score

bad " good "

Institute of Bioinformatics, NCTU
Determine the class according to the voting result of the k nearest neighbors of given pattern.

Example: pattern x is classified as “bad credit”.

Institute of Bioinformatics, NCTU
Institute of Bioinformatics, NCTU

Decision Tree

Income

High

Married

Yes

Good

No

Low

Poor

Name	Debt	Income	Married?	Risk
Joe | High| High | Yes | Good
Sue | Low | High | Yes | Good
John | Low | High | No | Poor
Mary | High| Low | Yes | Poor
Fred | Low | Low | Yes | Poor
Institute of Bioinformatics, NCTU

Neural Network

Neuron

\[\sum \phi(.) \]

\[x_1 w_1 \]
\[x_2 w_2 \]
\[\vdots \]
\[x_k w_k \]

\[y \]

\[b \]

\[w_0 \]

\[\Sigma: \text{summation} \]

\[b: \text{bias} \]

\[\phi(.) : \text{activation function} \]
Design of Accurate Credit Scoring Model

- Intelligent Genetic Algorithm
- The Evolutionary Design of Fuzzy Rule-Based Classifier
Design of Credit Scoring Model

- We proposed an evolutionary approach to solve credit scoring problem.
- All the design parameters of the fuzzy classifier are optimized using an inherent intelligent genetic algorithm.
Intelligent Genetic Algorithm

Genetic Algorithm (GA)

- Advantages
 - Robust
 - The optimization mechanism is independent of the problem.
 - Global search
 - It deals with the balance between exploration and exploitation in a search space.
- Flexible
 - GA can easily integrate with heuristics to solve problem more efficiently.

Institute of Bioinformatics, NCTU
Intelligent Genetic Algorithm

GA vs. Numerical Method

Global optimal

Search space

Local optimal

Numerical method

Genetic Algorithm

Institute of Bioinformatics, NCTU
Intelligent Genetic Algorithm

Flowchart of GA

- Objective function (Fitness function)
- Encoding
 - chromosome (individual)
 - gene
- Selection
- Crossover
- Mutation
- Results

Initial population

Evaluation

Selection

Crossover

Mutation

No
Stop the algorithm?

Yes
Final solution
Intelligent Genetic Algorithm

Drawback of conventional GA

- The performance of simple GA (SGA) suffer from the large number of optimization parameters of complicate problems
 - The search space exponentially grows when the number of optimization parameter increasing.
 - Fitness function only can evaluate an entire chromosome. It cannot evaluate the contribution of individual parameter.
 - It is difficult to generate high quality offspring using traditional crossover operators.
Intelligent Genetic Algorithm (IGA)

- Improve the crossover operator. It uses a systematic reasoning approach to evaluate the contribution of individual parameters to the fitness function, and recombine the better offspring according to the contributions.
Intelligent Genetic Algorithm

Conventional Random Crossover

Better combination!

Intelligent Crossover

gene segment

Institute of Bioinformatics, NCTU
Intelligent Genetic Algorithm

- Orthogonal Arrays (OA)
 - The orthogonal experimental design (OED) based on OA is a very efficient systematic reasoning mechanism which can obtain the optimal combination in linear computation time.
 - It has been widely applied to quality engineering, such as Taguchi Method.

- Intelligent Crossover
 - Recombine high quality offspring from the parent chromosomes according to the contribution of each parameter to the fitness function using OED and factor analysis.

Institute of Bioinformatics, NCTU
Intelligent Genetic Algorithm

$L_8(2^7)$ Orthogonal Array

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Factors</th>
<th>Evaluation value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1 1 1 1 1 1</td>
<td>y_1</td>
</tr>
<tr>
<td>2</td>
<td>1 1 1 2 2 2 2</td>
<td>y_2</td>
</tr>
<tr>
<td>3</td>
<td>1 2 2 1 1 2 2</td>
<td>y_3</td>
</tr>
<tr>
<td>4</td>
<td>1 2 2 2 2 1 1</td>
<td>y_4</td>
</tr>
<tr>
<td>5</td>
<td>2 1 2 1 2 1 2</td>
<td>y_5</td>
</tr>
<tr>
<td>6</td>
<td>2 1 2 2 1 2 1</td>
<td>y_6</td>
</tr>
<tr>
<td>7</td>
<td>2 2 1 1 2 2 1</td>
<td>y_7</td>
</tr>
<tr>
<td>8</td>
<td>2 2 1 2 1 1 2</td>
<td>y_8</td>
</tr>
</tbody>
</table>
Step 1: Use the first columns of OA $L_\beta(2^\beta - 1)$ where $\beta = 2^\lceil \log_2(\beta+1) \rceil$

Step 2: Let levels 1 and 2 of factor j represent the j^{th} parameter of a chromosome coming from parents P_1 and P_2, respectively.

Step 3: Evaluate the fitness values y_t for experiment t where $t=2, ..., \beta$. The value of y_1 is the fitness of P_1.

Step 4: Compute the main effect S_{jk}

$$S_{jk} = \sum_{t=1}^{\alpha+1} y_t \cdot F_t, \ j = 1, ..., \alpha, \ k = 1, 2$$

where $F_t=1$ if the level of factor j of experiment t is k; otherwise, $F_t=0$.
- Step 5: Determine the better one of two levels of each factor. Select level 1 for the j^{th} factor if $S_{j1} > S_{j2}$. Otherwise, select level 2.
- Step 6: The chromosome of C_1 is formed using the combination of the better genes from the derived corresponding parents.
- Step 7: The chromosome of C_1 is formed similarly as C_2, except that the factor with the smallest main effect difference adopts the other level.
- Step 8: The best two individuals among P_1, P_1, C_1, C_2, and β^{-1} combinations of OA are used as the final children C_1 and C_2 for elitist strategy.
Intelligent Genetic Algorithm

Further Reading

Intelligent Genetic Algorithm

Some Published Applications

- Data Mining
- VLSI Floor Planning
- Image Segmentation
- Polygonal Approximation
- Multi-Criteria Optimization
- Scheduling
- Multicast Routing
- System Identification
- Automatic Control System Design
- Fuzzy Neural Network Optimization
Fuzzy theory has been successfully applied to classifier design.

- Fuzzy neural network
- Fuzzy k-NN classifier
- Fuzzy rule-based classifier

The linguistic rule representation of fuzzy rule-based classifier are more comprehensible than other fuzzy classifiers.
The Evolutionary Design Approach
- Fuzzy Rule-Based Classifier

- **Fuzzy Partition**
 - The feature space is partitioned into regions using the membership functions.
 - Each region is assigned an appropriate rule.

- **Fuzzy Reasoning**
 - Calculate the fire strength of each rule, and
 - Determine the output by the voting result of rules
The Evolutionary Design Approach

Fuzzy Rule-Based Classifier

2D Example

Rule base:

\[R_1: \text{If } x_1 \text{ is } A_{11} \text{ and } x_2 \text{ is } A_{12} \text{ then Class 1 with CF} = 0.8 \]

\[R_2: \text{If } x_1 \text{ is } A_{21} \text{ and } x_2 \text{ is } A_{22} \text{ then Class 2 with CF} = 0.5 \]

\(A_{ji} : \text{Fuzzy Sets} \)

\(\mu_{A_{ji}}(x_i) : \text{Membership functions} \)

\(\text{CF: Grade of certainty} \)
To full utilize the classification ability of fuzzy rule-based classifier, the optimization of the membership functions and the rule base is required.

The fuzzy classifier design is formulated as a parameter optimization problem which is solved using evolutionary approaches.
The Evolutionary Design Approach

- Fuzzy Rule-Based Classifier

- For real-world applications, the number of design parameters of fuzzy classifier would be large.

- The performance of conventional genetic algorithms suffer from the large parameter optimization problem.

- The proposed IGA can efficiently solve the difficult optimization problem.
The Evolutionary Design Approach

The Characteristics

- The entire fuzzy rule base is encoded as a chromosome.
- Independent feature selection for each rule.
- Use clustering algorithms to obtain the initial location of membership function.
- Incorporate an efficient inheritance strategy with multi-stage evolution.
The Evolutionary Design Approach

- **Membership Functions**

- A function represents the membership degree of an object \(x \) belonging to a fuzzy set \(A \).
- We use an asymmetric Gaussian function as the membership function. The shape is determined by three parameters \(c, \sigma_1, \sigma_2 \).

\[
\mu(x) = \begin{cases}
 e^{-\frac{(x-c)^2}{\sigma_1^2}} & \text{if } x < c \\
 e^{-\frac{(x-c)^2}{\sigma_2^2}} & \text{if } x \geq c
\end{cases}
\]
We also use a “don’t care” membership function which can simplify the fuzzy rules.

The membership $\mu(x)$ is always 1

Example:

R_1: If x_1 is A_{11} then credit is good with $CF=0.5$

R_2: If x_1 is A_{21} and x_2 is A_{22} then credit is bad with $CF=0.8$

where R_1 has an implicit condition: x_2 is “don’t care”
Calculation of fire strength

Let \(x_p = (x_{p1}, x_{p2}, \ldots, x_{pn}) \) be the vector of input variables, the fire strength \(\mu_{R_j}(x_p) \) (the membership degree of \(x_p \) belong to the rule) of \(R_j \) is determined as follows:

\[
\mu_{R_j}(x_p) = \mu_{A_{j1}}(x_{p1}) \cdot \ldots \cdot \mu_{A_{jn}}(x_{pn}) = \prod_{i=1}^{n} \mu_{A_{ji}}(x_{pi})
\]
The Evolutionary Design Approach

- Fuzzy Reasoning

- Determine the output class of x_p
 - Step 1: Calculate the scores $S_{\text{class } v}$, $v=0,1$ (good credit and bad credit)

$$S_{\text{class } v} = \sum_{j=1}^{N} \mu_{R_j}(x_p) \cdot CF_j$$

- Step 2: Classify x_p to the class with the highest score $S_{\text{class } v}$
The Evolutionary Design Approach

Fuzzy Reasoning

Given $x_p=(0.4, 0.5)$, then

$$\mu_{R_1}(x_p) = 1.0 \times 0.3 = 0.30$$
$$\mu_{R_2}(x_p) = 0.3 \times 0.7 = 0.21$$

$S_{\text{class0}} = 0.30 \times 0.8 = 0.240$
$S_{\text{class1}} = 0.21 \times 0.5 = 0.105$

x_p is Class 0
(Score: 0.135)
Rule R_0

- All the antecedent conditions are “don’t care”
- Output class is 0
- CF_0 is evolved by IGA

Rules R_1, \ldots, R_m

- The antecedent conditions are evolved by IGA
- Output classes are 1
- CF_j is determined by heuristic.
The Evolutionary Design Approach

Chromosome Representation

- The control genes perform feature selection for rules.
 - If $f_i = 0$, the corresponding membership function of x_i is "don't care"
 - If $f_i = 1$, the corresponding membership function of x_i is $\text{Gauss2}(c_i, \sigma_{i1}, \sigma_{i2})$

<table>
<thead>
<tr>
<th>Control genes</th>
<th>Parametric genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1, \ldots, f_n</td>
<td>$c_1, \sigma_{11}, \sigma_{12}$</td>
</tr>
<tr>
<td>\ldots</td>
<td>$c_n, \sigma_{n1}, \sigma_{n2}$</td>
</tr>
</tbody>
</table>

CF_0 R_1 \ldots R_m
The Evolutionary Design Approach

Grade of Certainty

- Use the method proposed by H. Ishibuchi
 - Step 1: Calculate the fire strength of R_j for each training sample x_p
 - Step 2: Calculate the sum of strengths β_0, β_1

\[
\beta_0 = \sum_{x_p \in \text{class}0} \mu_{R_j}(x_p) \quad \beta_1 = \sum_{x_p \in \text{class}1} \mu_{R_j}(x_p)
\]

- Step 3: CF is defined as

\[
CF = \max\left(\frac{\beta_0 - \beta_1}{\beta_0 + \beta_1}, 0\right)
\]
Minimizing the misclassification cost is equal to maximizing the profit of correct classification.

The fitness functions is defined as

$$\max F(FC) = C_0 \cdot NCP_0 + C_1 \cdot NCP_1,$$

FC: the decoded fuzzy classifier

NCP_0, NCP_1: the number of correct classified patterns of class 0 and class 1

C_0, C_1: the weight values of cost.
The Evolutionary Design Approach

- Inheritance Strategy

Stage 1:

\[
\begin{array}{|c|c|}
\hline
CF_0 & R_1 \\
\hline
\end{array}
\]

Inherit

Stage 2:

\[
\begin{array}{|c|c|c|}
\hline
CF_0 & R_1 & R_2 \\
\hline
\end{array}
\]

\[
\vdots
\]

Inherit

Stage m:

\[
\begin{array}{|c|c|c|}
\hline
CF_0 & R_1 & \ldots & R_m \\
\hline
\end{array}
\]

Institute of Bioinformatics, NCTU
The Evolutionary Design Approach

The Procedural

- Step 1: Let the number of rules of class 1 N_{r_1} = 1
- Step 2: Partitioning the class 1 samples into N_{r_1} clusters using k-means.
- Step 3: Initialization of population
 - First half: Center parameters c_j of membership functions are the means of clusters. Other parameters are assigned a random value.
 - Others: C_F_0 and the parameters of the first $N_{r_1}-1$ rules direct inherit from the previous evolution stage, and the parameters of the N_{r_1}-th rule are assigned a random value. If no previous stage, the initialization is the same as the first half.

Institute of Bioinformatics, NCTU
The Evolutionary Design Approach

The Procedural

- Step 4: Optimize the parameters of current stage using IGA
- Step 5: Add the optimal solution to the Pareto set.
- Step 6: If N_{r1} reaches predefined $N_{r1_{\max}}$, stop the multi-stage evolution.
- Step 7: Otherwise, let $N_{r1} = N_{r1} + 1$ and go to step 2.
Experimental Result

- Data Set and Parameter Setting

- Credit Scoring Data Set
 - Number of features: 28
 - Training samples: 60,000
 - Test samples: 6,638

- Weight values of cost: \(C_0 = 1, \ C_1 = 5 \)

- The parameter setting of IGA
 - \(N_{\text{pop}} = 20 \)
 - \(P_c = 0.8 \)
 - \(P_m = 0.05 \)
 - Max. number of function evaluation: 5000 times per stage

Institute of Bioinformatics, NCTU
Experimental Result

Convergence of Multi-Stage Evolution

![Graph showing convergence of fitness value over iterations for different Nr1 values.](image-url)
<table>
<thead>
<tr>
<th>Nr1</th>
<th>Training</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>overall</td>
<td>class 0</td>
</tr>
<tr>
<td>1</td>
<td>90.42</td>
<td>100.00</td>
</tr>
<tr>
<td>2</td>
<td>91.09</td>
<td>95.76</td>
</tr>
<tr>
<td>3</td>
<td>90.01</td>
<td>93.97</td>
</tr>
<tr>
<td>4</td>
<td>90.01</td>
<td>93.97</td>
</tr>
<tr>
<td>5</td>
<td>90.42</td>
<td>94.53</td>
</tr>
<tr>
<td>6</td>
<td>90.96</td>
<td>95.28</td>
</tr>
</tbody>
</table>

Institute of Bioinformatics, NCTU
Experimental Result

Classification Accuracy

Training Samples

Test Samples

Institute of Bioinformatics, NCTU
Experimental Result

- Histogram of Scores (training samples)

$N_{r1}=2$

$N_{r1}=5$

(semi-log scale for Y-axis)

Institute of Bioinformatics, NCTU
Experimental Result

- ROC Curves

Training Samples

ROC Curve (Training Set)

- Nr1=1
- Nr1=2,3,4
- Nr1=5,6

Test Samples

ROC Curve (Test Set)

- Nr1=1
- Nr1=2,3,4
- Nr1=5,6

Institute of Bioinformatics, NCTU
Discussions

- The proposed approach can generate a set of solutions. The choice of solution is depended on user’s preference.

- The proposed approach can generate quantitative scores for input patterns.

- The histogram of scores is similar to the probability density model.

Institute of Bioinformatics, NCTU
Conclusions

- Using machine intelligence to establish accurate credit scoring model would be popular in the near future.

- The proposed evolutionary approach can obtain accurate and interpretable credit scoring models.

- It can be further extended to design credit rating systems and probability models.
~ Thank You ~

Institute of Bioinformatics, NCTU