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An analysis of dynamical cross correlations in financial time series are carried
out. We first calculate 1-day return of 557 Japanese stocks for the 11-year pe-

riod of 1996-2006, and take a discrete Fourier transform of the return. Then
we construct a correlation matrix C(ω) for each frequency ω, and calculate
the eigenvalues λ of C(ω). Also we repeat the same calculation using random

data instead of real stock returns for reference. Comparison of the empirical
eigenvalues with the reference results enables us to extract essential dynam-
ical correlations involved in complicated behavior of the stock returns. Fur-
thermore, we demonstrate the eigenvectors associated with the outliers of λ′s
significantly differ from the random case.
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1. Introduction

Recently correlations between different stocks have been investigated very
actively, and the results are applied to portfolio management. The suc-
cesses [1-3] are remarkable in eliminating noise out of the equal-time corre-
lations based on the random matrix theory (RMT). However, it is impor-
tant to pay our attention to not only the static correlations but also the
time-lagged correlations. Although some effort was made [4], the research to
analyze such dynamical correlations has just been initiated. In this paper,
we propose a new alternative method.

2. Static Cross-Correlations

We begin with defining return of the stock i(= 1, · · · , N)

ri(t) ≡ ln Si(t + 1) − ln Si(t), (1)
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where Si(t) is the stock price at time t(= 1, · · · , T ). And then we normalize
the return as

wi(t) ≡
ri(t) − 〈ri〉

σi
, (2)

where σi ≡
√

〈(ri − 〈ri〉)2〉 is the standard deviation of ri, and 〈· · · 〉 denotes
a time-average over the period T .

The equal-time cross-correlation matrix C is defined as

C ≡ 1
T

WWt, (3)

where W is a N × T rectangular matrix with elements Wit ≡ wi(t) and
Wt, its transpose. So the component of the cross-correlation matrix C is
given as

Cij = 〈wi(t)wj(t)〉. (4)

According to the RMT, in the limit N → ∞, T → ∞, such that Q =
T
N ≥ 1 is fixed, the probability density ρ(λ) for the eigenvalue λ of the
corresponding random matrix is given [5-8] by

ρ(λ) =
Q

2π

√
(λ+ − λ)(λ − λ−)

λ
, (5)

λ± =
(

1 +
1
Q

± 2
√

1
Q

)
. (6)

To analyze a database from the Tokyo Stock Exchange, we use 1-day
return for the 11-yr period of 1996-2006 (T = 2707 days). We extract
from this database 557 stocks that were priced for all business days in that
period. Figure 1(a) shows ρ(λ) for the cross-correlation matrix C with the
real data. There are 13 eigenvalues larger than the upper cutoff λ+.

To construct the cross correlation matrix, we also use the Spearman’s
rank correlation coefficient. It is a non-parametric measure of correlations
that may be more effective when the distribution is not normal. We first
rank the return r

′

i(t)(= 1 ∼ T ) and normalize the ranking as

w
′

i(t) ≡
r
′

i(t) − 〈r′

i〉
σ

′
i

, (7)

where σ
′

i ≡
√
〈(r′

i − 〈r′
i〉)

2〉 is the standard deviation of r
′

i. We then recon-
struct the correlation matrix C

′
using w

′

i in place of wi and caluclate the
eignvalues of C

′
. The results as shown in Fig. 1(b) are almost indistinguish-

able from those in Fig. 1(a).
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Fig. 1. (a) The eigenvalue distribution for the empirical C, where Q = T
N

= 4.86. If
the returns are completely random, the eigenvalues are distributed in the interval 0.30 ≤
λ ≤ 2.11. However the largest eigenvalue, λ ' 132, is 60 times larger than the upper

cutoff. (b) The eigenvalue distribution for the cross-correlation matrix constructed from
the Spearman’s rank correlation coefficients with the same data. The largest eigenvalue
is λ ' 139.

The i-th component of the eigenvector corresponding to the eigenvalue
λα will be denoted as vα,i. We normalize it such that

∑N
i=1 vα,i

2 = N . The
RMT shows the components vα,i of the random correlation matrix should
distribute according to the Gaussian with mean zero and unit variance,

ρ(v) =
1√
2π

exp
(
−v2

2

)
. (8)

3. Dynamical Cross-Correlations

We define time-lagged correlation function as

Cij(τ) = 〈wi(t + τ)wj(t)〉, (9)

where τ is the time-lag. The discrete Fourier transform of Cij(τ) is∑
τ

Cij(τ) exp(−iωτ) =
1
T

∑
τ

∑
t

wi(t + τ)wj(t) exp(−iωτ)

=
1
T

Wi(ω)W ∗
j (ω)

≡ Cij(ω),

(10)

where Wi(ω) ≡
∑
t

wi(t) exp(−iωt).

The correlation matrix C(ω) in the Fourier space relates to the equal-time
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cross-correlation matrix C through the sum rule∑
ω

C(ω) = C. (11)

3.1. Distribution of Eigenvalues

The rank of the correlation matrix C(ω) reduces to 1, so that C(ω) has
only a single eigenvalue λω( 6= 0). The eigenvalue λω is explicitly given as

λω =
1
T

∑
j

|Wj(ω)|2

=
1
T

∑
j

∑
t

∑
t′

wj(t)wj(t
′
) exp

{
i(t

′ − t)ω
}

.

(12)

In the case where wj(t) are random numbers with zero mean and unit vari-
ance, the central limit theorem guarantees the distribution of the eigenval-
ues at any frequency takes the Gaussian form:

ρ(λ) =
1√

2πN
exp

(
− (λ − N)2

2N

)
. (13)

We calculated λω’s for the dynamical correlation matrix using the same
real data as for the equal-time correlation matrix. There are a number of
spikes in the frequency spectrum of the eigenvalues as seen in the panel (a)
of Fig. 2. The corresponding panel of Fig. 3 shows the probability density
ρ(λ) of the eigenvalues for all the frequencies. The distribution remarkably
deviates from Eq. (13). The panels (b) in Figs. 2 and 3 are the frequency
spectrum of the eigenvalues and its distribution, respectively, but for the
random data. The distribution is now in good agreement with Eq. (13).
The largest eigenvalue (1769.7) is about 3.18 times larger than the average
(557.0). Although the averages of the eigenvalues are almost identical for
both data, but the standard deviation (149.0) of the eigenvalue distribution
for the real stock data is much larger than that (23.5) for the random data.

3.2. Distribution of Eigenvector Components

The i-th component of the eigenvector corresponding to an eigenvalue λω

will be denoted as uω,i. We normalize it such that
∑N

i=1 |uω,i|2 = N . For a
random counterpart of the dynamical correlation matrix C(ω), the distri-
bution ρ(|u|) of the eigenvector components should conform to

ρ(|u|) = 2|u| exp
(
−|u|2

)
. (14)
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Fig. 2. (a) Frequency spectrum of the
eigenvalue for the real market data. (b)
Frequency spectrum of the eigenvalue for
the random data.

Fig. 3. The probability density of the
eigenvalues for all frequencies; (a) using
the real stock data, (b) using the random
data.

This corresponds to Eq. (??) in the static RMT. Figure 4(a) shows ρ(|u|) for
the real correlation matrix appreciably deviates from Eq. (14). Figure 4(c)
illustrates the eigenvector components u’s themselves in the complex plane
for the largest eigenvalue. We thus see there is a dynamical fluctuation in
which most of the stocks behave in phase with a period of 9.47 days. In
contrast, the results for the third-smallest eigenvalue agrees well with the
random results as shown in the panels (b) and (d) of Fig. 4.

3.3. Dynamical market trend

All the components coherently participate in the eigenvector associated
with the largest eigenvalue for the static correlation matrix. It thereby
represents an influence that is common to all stocks. Also we observe such
market trend is reflected in the eigenvectors with large eigenvalues for the
dynamical correlation matrix as demonstrated in Figure 4(c); those outliers
thus correspond to the market trend. Figure 5 plots the norm-ranking of
the eigenvector components for the dynamical correlation matrix at ten
characteristic frequencies. These periods arises from the first 10 largest
eigenvalues for the dynamical correlation matrix.

We chose the top five dominant components of the market trend eigen-
vector for the static cross correlations to trace their behavior. As appreci-
ated in the figure, the dominant components in the eigenvector of the largest
eigenvalue for the static correlation matrix do not always lead in the dy-
namical correlations. Adopting the present analytical method, we were thus
able to resolve the market trend into dynamically inter-correlated compo-
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Fig. 4. (a) Distribution ρ(|u|) of the norm of the eigenvector components for the largest
eigenvalue λ ≈ 1769.7 with period T ≈ 9.47days.(b)ρ(|u|) for the third-smallest eigen-

value λ ≈ 264.0 with T ≈ 142.5 days. Note the good agreement with Eq. (4.3) (solid
curve). (c) Eigenvector components of (a). (d) Eigenvector components of (b).

nents with characteristic frequencies.

4. Conclusion

We have confirmed that the market returns have definite dynamical corre-
lations as well as static correlations through comparison of the eigenvalue
distribution calculated from the dynamical correlation matrix based on the
real market data with the random counterpart. Each component of the
eigenvector reflects temporal behavior of the corresponding stock. We are
thus successful in extracting essential dynamical correlations in the market
by observing the eigenvectors associated with the eigenvalues far apart from
the random reference. Stock prices data may be available at tick level. The
present method is also applicable to the analysis of such high-frequency
correlations.

We thank Ken Millennium Corporation for its financial support in car-
rying out the present work.
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Fig. 5. The norm-ranking of the eigenvector components for the dynamical correlation
matrix at ten characteristic frequencies (the corresponding periods are in units of day).

The top five dominant components of the market trend eigenvector for the static cross
correlations are traced. The types of industry for those chosen stocks are (a) real estate,
(b) financial, (c) textile, (d) machinery, and (e)non-iron metal.
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