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We summarize an experimental study on the viability of several call option
trading strategies that rely on our earlier work with machine-learning-based
detection and prediction of heightened volatility periods. The proposed trading
strategies makes use of the connection between call options prices and volatility
in the underlying.1? As part of these strategies, the trader would purchase call
options as soon as a period of heightened volatility has been detected, and,
alternatively, predicted. After that, the strategies suggest the ideal time to
sell the previously purchased options contracts in order to maximize profit.
The approach is evaluated with simulated option trading experiments, results
of which show that the idea has some merit. Furthermore, the experiments
provide an empirical basis for choosing the optimal strategy from among the
strategies we considered.

1. Introduction

In this paper, we make use of our previous work applying Machine-Learning-
based classification for detection/prediction of relative volatility clusters
(RVCs).>* Our methodology consists of the following steps: first we fit a
GARCH(1,1) model® to the historical data and use the model to identify
segments within the data with GARCH volatility levels significantly higher
than the average GARCH volatility computed over the entire length of
the historical data. Once these segments have been identified, the machine
learning (ML) algorithm is trained on the basis of these segments.

Instead of the important task of forecasting an exact volatility,b 8 we
use machine learning for pattern-recognition to either detect (the more
naive framework) or predict (the less-naive framework) periods of height-
ened GARCH volatility, as data arrive in a simulated actual-time segments,
using a sliding-windows method®. We therefore conduct our experiments

*Corresponding author: karen@nmt.edu
2In a sliding-windows method, a window/segment of some size is continuously processed
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with two distinct approaches to the problem of using pattern-recognition
based on GARCH model’s definition of relative volatility. The prediction
approach consists of a 3-step process: prediction, identification, completion
— when we determine that the volatility cluster has ended. The simpler
detection approach consists of only the identification and completion steps.
We should note that we do not formally control for jump processes, nor do
we assess alternative (to GARCH(1,1)) model formulations.

2. RVC detection/prediction

In this section we describe the methodology for detecting and predicting rel-
ative volatility clusters, using machine-learning-based classification. In the
case of detection, we partition the the universe of all time-series segments
(of any length) into two categories/classes: relatively volatile cluster
(RVC), and relatively non-volatile (RNV). Based on this assumption,
when a classifier determines that a given time-series segment is relatively
volatile, we can state that either the entire segment, or some part of it, is
a RVC.

Prediction is slightly more complex. Instead of just two classes, we con-
sider that every time-series segment is in one of three categories: pre-
[relatively] volatile (PRV), relatively volatile cluster (RVC), and
non-prevolatile(NPV), which is the class of segments that are neither
PRV nor RVC. As before, when the classifier identifies a given segment as
PRV, we have essentially an early warning that an RVC is coming sometime
in the future.

The ML classification algorithm we employ is the current industry-
standard Support Vector Machines (SVM) algorithm.” SVM can be de-
scribed as an algorithm that implements the Structural Risk Minimiza-
tion'® statistical inductive principle, and is simultaneously connected to
Tikhonov Regularization and ridge regression.!! It has been shown to be a
very robust algorithm with good generalization characteristics. A number of
excellent tutorial /books on SVM exist, among which the tutorial by Burges
(1998)*2 is quite helpful. Due to space limitation, we shall only touch upon
the aspects of SVM most relevant to the discussion in the paper.

2.1. Setup of the SVM classification module

The task of the SVM algorithm — indeed any classification algorithm — is
to compute a function that can estimate the class (output) of any given ob-

as it is shifted forward one frame/tick at time.
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servation (input). As an inductive learning algorithm, SVM computes this
classification function by ‘learning’ from an example set of input observa-
tions and their ‘actual’ or preferred outputs. An important part of using
SVM is the process of selecting a suitable example set, also called a training
set.

In the context of applying SVM to time-series, it is worth noting the
following: that the input observations used by the out-of-box SVM learning
algorithm need to be vectors of equal size. Therefore, all time-series seg-
ments used as SVM input observations are vectorized by making each tick
an element in the vector — a time-series segment 20 ticks long is represented
as a vector of 20 numbers.

For detailed description of the steps involved in producing the training
dataset and training the SVM is given in our earlier papers.>* First step of
the setup is fitting the GARCH(1,1) model to returns® of the historical un-
derlying price data and computing the conditional variances, which can be
used to explore the cases when shocks have influenced other shocks by way
of propagating volatility. Clusters of volatility are groups of highly interre-
lated shocks and they will show up as peaks in the conditional variances. It
is then up us to make a decision, using statistical inference tools and input
domain knowledge, whether or not these peaks are significantly® above the
average conditional variance for the entire series.

Another user chosen parameter is the minimum required length of
every segment that is to be added to the training dataset. A conditional
variance peak that is too short in length can be deemed to be a jump,
rather than a volatility cluster, which are assumed by most experts to differ
from short jumps. Thus, the return segments that correspond to conditional
variance peaks of sufficient height and sufficient length are labeled as RVC.

For detection, all sufficiently long returns sections with conditional vari-
ances within the norm are labeled as RNV. For prediction, however, we have
the special PRV class. For this class we choose returns sections that start
some time (prediction horizon) before every RVC segment and end right
before the start of that RVC segment. The prediction horizon is another
parameter that the user can modify to vary the nature of prediction. There
is, therefore, a 1-1 correspondence between the number of RVC and PRV
examples in the prediction dataset. The last ‘neither’ class examples are
chosen to be sufficiently long returns sections that have no overlap with

PThe returns are computed as log of the ratio of the current price to previous price.
°During the significance tests on the conditional variance peaks, we set the significance
threshold a = 0.05
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any of the RVC or PRV segments.

The example time-series segments, belonging to any of the classes, that
we selected during the previous steps could well have varying lengths, and,
hence, the vectors representing these segments could also be of varying
lengths. Due to the requirement, mentioned earlier, that all SVM training
observations be vectors of equal length, we find that the example time-series
segments cannot be used as is, and either the data or the algorithm must
be modified to make it work.

We find that a simple and effective solution is to modify the data by
transforming all example segments (returns) into the frequency domain, via
the periodogram function. The result is that in the frequency domain all the
segments are of equal length, equal to the number of frequency components,
which means that all vectors representing these segments are also equally
sized. After this transformation, the training dataset is used to train the
SVM to classify any given periodogram-transformed returns segment. In
addition to giving the predicted class of a new segment, the SVM model
can estimate the posterior probability of every class in the problem given
the new observation, p(y = c|z*), where z* is the new observation, ¥ is
its predicted class, and c is the index scalar for one of the classes in the
problem. The predicted class of the new segment is the one with the highest
posterior probability, § = arg max_ (p(y = c|z*)).

2.2. Setup for applying the SVM model

The setup for detection or prediction of RVCs is illustrated in Fig. 1. The
first step is combining the newly available price tick with past price ticks
to construct a window of some size. In the next two steps we compute
the returns of this price window, using the same formula as the one used
in the classification module setup, and compute the periodogram of the
returns. The periodogram is then vectorized and fed to the trained SVM
model to find its class. In the case of simple detection, the model outputs

Compute Compute
returns periodogram
= T
Detection Prediction
m SVM model : SVM model W

Fig. 1. A simple RVC detection system setup. The optimally trained SVM model is
already defined.

New tick is
available

Window of
fixed size
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two posterior probabilities: probability that the class of the periodogram-
transformed segment is RVC, represented in the condensed form as Pry ¢,
and a probability that the class is RNV, Pgryyv. In the case of prediction,
we have three posterior probabilities: that the window is pre-[relatively]
volatile, Ppry, relatively volatile, Pry ¢, and neither, Pypy. In the next
subsection we present the strategy for trading options that makes direct
use of these posterior probabilities.

3. Trading Strategies

Our first trading strategy makes use of simpler detection framework, while
the second one uses the three-class prediction framework briefly described
above. The strategy that uses detection is summarized in the diagram on
Fig. 2. As soon as we have detected an RVC event with the probability that
it is indeed an RVC event greater than some cutoff p’, we buy a single call
option contract at the top-of-book ask price. We hold the contracts until the
moment when we detect a RNV period, again with the probability above
some cutoff p”’. At that point we sell all options at the top-of-book bid
price. The cutoff constants p’ and p” allow us to control the responsiveness
of the strategy to the classification outputs.

Buy Call options | | Wait until Sell Call options
at Ask P > P at Bid

Fig. 2. Diagram outlining the options trading strategy based on detection.

The strategy based on prediction is outlined in the diagram on Fig.
3. Here we buy options when we have identified a PRV period, as before

with some level of certainty Ppry > p'”’

. From this point on, there are two
choices for the point of sale. Under option A, we sell when we detect an RVC
period with probability above cutoff p””/, while under option B we hold on
to the options until we detect the ‘other’ class NPV, with probability above

cutoff p"".

4. Data

To test the effectiveness of our strategies we performed a paper trading
simulation using USD/EUR price tick data, spanning the month of March,
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A: wait until
Poe > p

Buy Call
options at
Ask

Sell Call
options at
Bid

B: wait until

Py >p"™"

Fig. 3. Diagram outlining the options trading strategy based on prediction.

Options(Ask/Bid) Price

1.305

Fig. 4. Plot of the 30 second interval spot prices and ask/bid options prices.

2007 4, and corresponding call option quote data, with strike price of $1.35
and expiration of May, 2007, The simulated call option trades were made
during the period of March 11th to March 30th, 2007 (weeks 3,4, and 5).
Volatility clusters were detected/predicted within the USD/EUR, underly-
ing price data for the same period. The SVM models, for prediction as well
as for detection, were trained using the underlying prices during the period
of March 1st to March 9th (end of week 1 and week 2) — prior to start
of trading. Prior to their use, both options and spot price data were pre-
processed to create fixed interval data at intervals of 15, 30, and 60 (1 min)
seconds. Figure 4 contains the plots of the 30 second interval option prices
(bid and ask) and spot prices for entire month of March, 2007.

dThe data were purchased from Olsen Financial Technologies
(http://www.olsendata.com).
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5. Simulation Results

The design of the simulation experiments was straightforward. Upon train-
ing the detection and prediction SVM models on the first two weeks of
underlying price data, we followed the setup outlined in section 2.2 using
sliding-windows to simulate the process of adding a new price to past prices
to construct a window (cf. Fig. 1). To explore the effect of different window
sizes on the outcome of the trading, we let the window sizes vary from 5 to
30 ticks, in increments of 5 ticks.

The simulated trades followed the strategies outlined in section 3. The
sliding-windows simulation and the simulated trades spanned the period of
March 11th to March 30th (weeks 3,4, and 5).

As with the window sizes, we wanted to vary the interval frequency
of the data, to see if it has any impact on the efficacy of our approach.
We had 3 interval frequencies to experiment with: 15 seconds, 30 seconds,
and 60 seconds. Together with the 6 windows size choices, we had a 3 x 6
experiment grid. Furthermore, for each of the experiments in this grid, we
tried several cutoff probabilities p’, p”, p”’, p’"”’, and p””""". All six probability
cutoffs were allowed to vary from 0.5, smallest probability that is still higher
than the probabilities of the other classes, to 0.99, almost certain.

The profit at each selling point was computed simply as Ns — va b,
where N is the number of previously purchased option contracts at the
selling point, s is the bid price of the option at the selling point, and b;
is the ask price at the point of the i*® purchase. The total profit over the
entire three week period is that the sum of all profits from sales. We assume
that the market is sufficiently liquid to enable the sell transactions at the
bid price whenever we want to sell.

In Table 1, we list the results of our simulation experiments, comparing
the results across interval scales, window sizes, and probability cutoffs. The
table clearly shows that most profit is achieved when we trade based on
prediction of relative volatility clusters by the SVM model. The highest
profit of $11.61 was registered in the 15 second interval data, with windows
20 ticks long (5 minutes), using the prediction strategy under option A.
It is important to note that the prediction strategy under option B does
not result in equally high profits. This is in line with trading logic. At the
time when a segment of class PNV has been identified, the market has
had ample time to react to the heightened volatility and correct itself. In
contrast, at the moment when we detect a volatility cluster the market has
just been hit by the effect of heightened volatility resulting in higher options
prices, but it has not had enough time to correct itself. The table also shows
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Table 1. Highest total profits, in dollars, (negative means losses) for options
trades over the entire space of probability cutoffs, compared across all intervals
and window sizes.

Window Sizes

Intervals 5 10 15 20 25 30
"g 15 | -3.3123 -2.7376 -2.234  -1.8367 -1.5575 -1.18
¥ 30| -1.9353 -1.6313 -1.3645 -1.2338 -1.1648 -0.9222
A 60 -0.584  -0.1584 -0.1864 2.9315 2.0008 2.172

15 0.0003 0.7376 9.1464 11.611 1.0271 1.1925
30 | -0.7076 1.7449 1.4761 3.8512 0.4974 0.6378
< 60 | -0.3234 -0.2123 2.2343 2.9593 0.8253 0.4321

Predict

15 0.0002 -0.0017 -0.0038 -0.0008 -0.0023 -0.0068
30 | -0.1831 -0.0051 -0.0207  -0.0088 2.7417 0.1304
m 60| -0.3212 -0.0431 -0.09321 -0.0004 -0.0074 -0.003

Predict

Note: Positive profits are underlined.

that using detection alone achieves the lowest comparable profit. In Fig. 5
we provide a matrix plot of total profits using prediction with option A,
graphed against the probability cutoffs, spanning select interval frequencies
and window sizes. The graph for prediction shows that the best trading
strategy is to buy as soon as we are marginally sure that a pre-volatile
segment has been detected (Ppry > 0.5), and sell when we are almost
certain that a volatile tick has been detected (Pgryc > 0.99). For plots
of the total profits using the other strategies and spanning more window
sizes and more interval frequencies, we refer the reader to the following web
address: http://www.nmt.edu/~karen/volatilityanalyst/.

6. Conclusions

This initial experiment shows promise for generation of what are effectively
arbitrage profits in a sufficiently-liquid call option market. We will continue
to explore more complex trading scenarios and strategies.
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Fig. 5. Matrix plot of total profit using prediction with selling option A. Plots span
window sizes of 10, 20 and 30 ticks and intervals of 15 and 30 seconds. Each individual
plot graphs the total profit as the Z coordinate and the probability cutoffs p”’/ and p""”’
as X and Y coordinates, respectively



