
Forecasting Stock Returns using Evolutionary Artificial

Neural Networks
1

Prisadarng Skolpadungket, Keshav Dahal, Napat Harnpornchai

MOSAIC Research Group, University of Bradford, Great Horton Road,

Bradford, BD7 1DP, Great Britain.

CAMT, Chiang Mai University, Chiang Mai, Thailand.
{p.skolpadungket, k.p.dahal}@bradford.ac.uk, tomnapat@camt.info

Abstract. Several models and techniques have been used to forecast stock returns.

Some previous researches have applied Evolutionary Artificial Neural Networks to pre-

dict stocks prices. The most of previous researches have been concentrated on either

predict stock indexes or trends rather than individual stock returns. In this paper, we use

the adaptive EANNs to predict individual stock returns based on multivariate time series

(AR with state variables) models. Comparing with the traditional Linear Regressions, the

ANNs show promising results and our proposed EANNs can improve the performances

of the ANNs as we expected even the improvements are slights

1 Introduction

 For stock market investors and portfolio managers, it is crucial to have most

accurate forecast of stock returns. However, stock returns are difficult to forecast accu-

rately. Several models and techniques have been used to forecast stock returns. The

relevant models include autoregressive models (AR), autoregressive-moving-average

models (ARMA) and AR with state variables (explaining variable) models. It is reported

that the AR models with state variables are superior to the rest both in short-run and

long-run [1]. In developing a model with many state variables as model inputs to forecast

stock returns, a crucial part is to identify input variables. There are numerous theories

and models that determine the input variables ranging from technical analysis based on

trading data complicated multivariate time series models. The multivariate time series

models, which are based on fundamental factors, are considered more theoretically sound

than those based on technical factors (e.g. trading volume, price trend, etc.)[1]. They are

implied that stock prices and stock returns can be explained and thus predicted by a

number of “fundamental” economic factors as proposed by Capital Market Theory

(CAPM-single factor i.e. stock market index) [2,3] and Asset Pricing Theory (APT –

multi-factors)[4]. The inputs suggested by an empirical research were changing in eco-

nomic and financial variables such as changing in inflation, changing in yield spreads, etc

[5].

The techniques that have been deploy to forecast stock returns are linear regres-

sion (time-series), artificial neural networks (ANNs), decision trees, rule inductions,

Bayesian belief networks, evolutionary algorithms (EAs), classifier systems and associa-

tion rules [6]. Researches found that ANNs shows better performances than most of

techniques especially linear regressions [7]. However, ANNs with sub-optimal initial

weights can be trapped in local minima. In dynamic environments as the nature of learn-

ing objects are always changing, the topologies of the ANNs also should be adapted

accordingly. Evolutionary Algorithms can be applied to evolve ANNs at many levels e.g.

connection weights, topologies both the number of hidden nodes as well as the number of

hidden layers, and learning rules [8]. Some previous researches have applied Evolution-

ary Artificial Neural Networks (EANNs) to predict stocks prices [6,7]. In their research,

Kwon et al. [6] aimed to predict stock price trends (only up or down) by using EANNs

that could evolve their initial connection weights. Comparing buy-and-hold strategy,

Recurrent ANNs (RANNs)and EANNs, they found that their proposed EANNs outper-

formed Recusrrent ANNs, while EANNs were significantly outperformed the buy-and-

hold strategy. The same author in another paper [7], attempted to predict stock returns

mailto:k.p.dahal}@bradford.ac.uk
mailto:tomnapat@camt.info

based on stock correlations (with other stock in the same market). They proposed

EANNs (they called Feature Selection Genetic Algorithm –FSGA) that could evolve set

of inputs (selections of inputs). By comparing prediction performance (only stock price

up or down) of buy-and-hold, Recurrent ANNs and EANNs (FSGAs), they found that the

order of performance was the same i.e. EANNs then RANNs and then buy and hold. A

related research by Armano et al. [9] proposed an EANN algorithm called NXCS, essen-

tially a set of genetic classifiers designed to control feed forward ANNs’ activation for

performing forecasting at different particular local scopes, to predict stock indexes

(rather than individual stock prices or returns also up or down only.) The prediction then

results from experts’ interactions in the population. The research found that the proposed

methodology repeatedly outperformed buy-and-hold strategy.

 The most of previous researches have been concentrated on either predict stock

indexes or trends rather than individual stock returns [1,8]. For stock trading, merely

prediction on trends of stock prices or indexes would be adequate. But for portfolio op-

timisation especially mean-variances analysis (Markowitz) portfolio optimisation model,

to construct an efficient portfolio of stocks, a portfolio manager needs to most accurately

predict individual stock returns as well as their variances[11]. Our research in this paper

proposes an evolutionary scheme of neural networks with evolving connection weights

and “step-up” adding more hidden nodes and layers in order to search for optimal struc-

ture. We use the adaptive EANNs to predict individual stock returns based on multivari-

ate time series (AR with state variables) models. Since the input time series are quite

limited we also apply Multi-fold Cross Validation methods for the sections of the optimal

ANN structures. The prediction results have been compared with those of simple regres-

sions (Least Square Estimation) and of simple (non-evolutionary) ANNs (Backpropaga-

tion and Elman Recurrent ANNs.)

This paper is structured as follows: Section 2 gives a brief review of the time series

models for explanation and prediction of stock returns. Section 3 describes the ANNs, its

encoding representation for the evolutionary algorithm and the nonlinear cross-validation

calculation as the objective function for evolutionary selection as well as the complete

loop of evolution algorithm. Section 4 details for the dataset and experiment setting.

Where as section 5 shows the results with discussion. Section 6 provides for conclusions

and suggestion for future works

2 Time Series Models of Stock Returns

Generally, asset returns are the difference in prices from the beginning period

(investing time) to (disinvesting time) plus dividends if any. For convenience and by

assuming that either the time is quite short or dividend payouts are always reflected in

asset prices, we will disregard dividends in the models. We can generalize models of

asset return into 3 categories of models. In the simplest AR Model for time-variation

expected returns, the expected returns follow auto-regressive (AR) processes. The second

category is called the ARMA model. The logarithmic prices of assets have two compo-

nents, a permanent part and a transitory part. The permanent part follows an AR process.

On the other hand, the transitory part follows a moving average (MA) process. The last

category is the state variable model. In this kind of model, the transitory component of

price not only depends on its own past value but also on state variable (x) which are

relevant financial and economic variables. The AR Model of expected returns has con-

siderable capacity to capture the movement of stock returns over short-horizons but has a

mediocre capacity to predict the expected stock return over longer-horizons. On the other

hand, the ARMA model does a good job of forecasting long-horizon returns, but has no

adequate flexibility to capture the pattern of expected return at short horizons. While, the

State Variable model is the best in at least four aspects namely, using only the recent past

returns, parsimonious, good prediction in the short-run and good prediction in the long-

run[1].

A State Variable model with K state variables and N time lags can be stated as

)1(
1

t

K

k

N

i

k

it

k

i

N

i

itit exrr +∆+= ∑ ∑∑ −

=

− γφ

Where,

rt, , rt-i is stock returns at the time period t and t-i respectively.

iφ is stock return’s autoregressive coefficient for time lag i.

xt-i
k
is the k

th
 state variable at previous i

th
 time period,

γι
k
 is the regression coefficient for the previous i

th
 period of the k

th
 state variable,

eτ is the error term.

 Factors that have evidences of influencing stock returns and include in our

model are previous stock returns (R), unemployment (U), money supply (M), stock index

(SP500), inflation (CPI), default spread (DS), term spread (TS), reference interest rate

(FED), industrial production (IP), and January effect (JAN-circumstantial variable)[11].

Note that we exclude some factors that have no monthly data e.g. trade deficits, GDP etc.

The model deploy in this paper can be stated as follow:

R(t=0) = R(t=-1 to -12) + U(t=-1 to -12) + M(t=-1 to -12) + SP500(t=-1 to -12) + CPI(t=-1 to -12) +

 DS(t=-1 to -12) + TS(t=-1 to -12) + FED(t=-1 to -12) + IP(t=-1 to -12) +JAN(t=-1 to -12)

(2)

The model constitutes 1 predicting output and 120 inputs (10 kinds with 12 month

lags each.) For January effect (JAN), the input is “1” if the month is January and “0”

otherwise.

3 Evolutionary ANN Design

3.1 The ANN and EA Encoding

 In this paper, BPNs and Elman RANs are used to predict stock return for next T

period ahead. The proposed encodings for the BPNs and RANs for evolving proposes

uses direct encoding for connection weights and indirect encoding for the number of

hidden nodes and the number of layers. There are two set of evolving encoding gene

namely weight matrices and layer specification. A weight matrix describes weights of

connections for each node (hidden and output nodes) to other hidden nodes in the imme-

diate previous layer (may be the input layer for hidden nodes in the first hidden layer.)

The weight values are in between -1 and 1. In the first generation the weights are ran-

domly set up. And also when the structure of an ANN is changing i.e. adding a hidden

node or adding a hidden layer, the weights are also randomly re-assigned. In evolution-

ary process, each weight mutates to its current value plus random number between -0.5

and 0.5. If the mutated values exceed 1 or below -1, the weight will be set to 1 or -1

respectively. A layer specification is a vector of integer describing the number of hidden

nodes in each layer excluding input layers thus the length of layer specification is equal

to the number of hidden node plus one of output layer. In evolutionary process, after a

mutation on connection weights cannot improves the performance of an ANN, a hidden

node is added into the first hidden layer with all connection weights are randomly reas-

signed. If the inclusion of a hidden node in the first hidden layer also cannot improve the

performance of the ANN, a new hidden layer with 2 hidden nodes is put before the first

hidden layer (then become the fist hidden layer.)

Error!

Fig 1: The Stepwise Mutation EANN Algorithm

3.2 Evolutionary Algorithm

The proposed Evolutionary Algorithm used in this paper is a modified EP Net Algo-

rithm from [2]. The proposed EA is named Step-up Mutation Evolutionary ANN. As the

name suggests, the algorithm begins with a mutation that has least effect on the structure

of ANNs then “step-up” to which have more effects if the previous mutation fails to

improve the performance of the ANNs. On the other hand, if the mutation can improve

the performance, the mutant will be selected while its parent will be discarded (dual

tournament with its parent) and the loop will continue to the next iteration. The main

loop is shown in Figure 1. The Algorithm begins with random initialization a set of ANN

encoding genetic boxes then creates the corresponding ANNs. All of the ANNs are

initially trained to collect their preliminary fitness values. The selected ANNs then goes

under the “step-up” mutation with 3 conditional sub-steps, namely, connection weight

mutations, hidden node mutations and connection mutations. The mutations are condi-

tionally step-up in such a way that it will step at a sub-step if the trained corresponding

ANN’s fitness value (in this case, MCV value as described in the next section) is im-

proved. The process repeats until the pre-specified round count is met. The algorithm

does not have mating operator but based the evolution solely on the mutation operators.

3.3 The EA Objective

 Multifold Cross-Validation (MCV) is a method that makes efficient use of the

available data. It is a sample re-used method to estimate prediction risk. Our EA objec-

tive is to minimize prediction risk of the RANN. MCV is essentially a perturbation re-

finement of Cross-Validation (CV) methods. The method can be described as follows:

 Let the data set D be divided into m randomly chosen disjoint subsets Dj of

roughly equal size.

N

N

Y

Y

Random

initialization

Initial partial

training

Selection

Step-up

mutation

Obtain new

generation

Further

Training

Connection Wgt. mutations

ANNs traning

Improved?

Hidden node mutations

ANNs traning

Improved?

RANNs traning

Connection mutations

Stop?

N

Y

)3(,
1

jiforDDDD ji

m

j j ≠∀=∩=
=

φU

For each disjoint set j, CV is defined as

)4()),(ˆ(
1

)(2

),(

kj

Dtx

k

j

D xDt
N

CV
jkk

j λµλ −= ∑
∈

Where,

µλ(Dj , xk) is an estimator trained on all data except (x, t) ε Dj ,

tk is the realized (actual) output,

xk is the vector of all inputs,

Nj is the number of observation in subset Dj.

Cross-Validation (CV) for all available data set of an ANN is a non parametric

estimation of the prediction risk.

)5()(
1

)(λλ ∑=
j

D j
CV

m
CV

A refinement is required for CV to become MCV. An ANN is trained on the entire set of

data D to obtain estimates µλ(D, xk) with set of weights W0. The weights W0 are used as

starting point m-fold cross validation production procedure. Each subset Dj is removed

from the training data in turn. The ANN is then retrained using the remaining data (start-

ing at W0, not random initial weights) assuming that deleting a subset from training data

set does not lead to a significant different in the locally-optima weights. These perturbed

retraining from W0 yield Wi (i = 1 to m.) The MCV error is calculated for each “per-

turbed model” by the sum (tk - µλ(Dj, xk)) as an estimation of prediction risk of the mod-

el with W0 [3.]

 Fig 2: Multi-fold Cross Validation for Selection of Optimal ANN Structure

4 The Experiment

 The forecast ANNs and the experiments were conducted with the Step-up Muta-

tion EANN Algorithm proposed above with BPNs and Elman RANs without evolutions

as well as forecasting from Linear Least Square Regression (LS) in order to compare

their performance. All forecasting have been trained and tested with monthly dividend

and split adjusted return series from 1971 to 2007 on 10 selected stocks in US Stock

markets, namely Alcoa (AA), Boeing (BA), Caterpillar (CAT), Dupont (DD), Disney

(DIS), General Electric (GE), General Motor (GM), Honeywell (HON), HP (HPQ) and

IBM (IBM). The independent variables are 12 month time lag (from lag = -1 to -12) of

changing on inflation (CPI), default yield spread, term yield spread, fed fund rate, indus-

Validating Set

Training Set

1972 1977 1982 1987 1992 1997

trial product, money quantity (M), S&P 500, unemployment rate, January effect (dummy

variable) also stock returns own lags. The sets of data are paired between a dependent

variable and a set of time lags independent variables (10 nominal variables with 12 lags,

in totality 120 including lags) to form pattern sets (10 stocks in consideration thus 10

pattern sets.)

 For training and testing the regression model (LS), BPNs and Elman RNNs,

each pattern sets are break into 16 subsets: 8 subsets for training and 8 subsets for testing

(1972 – 1999 for training and 2000 for testing, 1973-2000 for training and 2001 for

testing correspondingly to the eighth set 1978-2006 for training and 2007 for testing).

But for training and testing the Evolutionary ANNs, each pattern set from 1972-1997 is

break into 5 subsets (12 months for 5 years thus 60 patterns each.) The subsets then form

5 training sets corresponding with a validating set for training and testing to obtain

MCVs’ value (see Figure 2). Then the best group of genes, in which they have minimum

MVCs of the last generation for each stock, is deployed to structure ANNs. The same

pattern sets are used to train and test LS, BPNs and Elman RNNs.

 The parameters for all BPNs, Elman RNNs and final training testing for EANNs

are as follows: Epoch limit is 100. Error limit is 0.0. The learning constant is 1. The

(initial for EANN) architecture is 1 hidden layer with 2 nodes. The step-up evolution

algorithm was run 50 generations on population of 10 ANNs (5 BPNs and 5 Elman

RANNs) with conditional mutation probability is 1 (a mutation will affect only there is

an improvement).

5 The Results

0

0.1

0.2

0.3

0.4

AA BA CATDIS DD GE GMHON HP IBM

LS

BPN

Elman

EANN

Fig 3: Comapring Average NCV values of Linear Regression (LS), Backpropagation ANN (BPN)

and Elman Recurrent ANN (Elman)

 In comparison between the four methods of forecasting, namely Least Square

Regression (LS), Backpropagation ANN, Elman RAN and Evolutionary ANN (EANN)

for ten stock returns, we found that BPNs have a better performances in all stock return

forecasts than those of LS and Elman RANs. This results show that to increase complexi-

ty of ANN by introducing recurrent networks are not always improve forecasting perfor-

mances. For the EANNs, they are all but one (namely GM’s) at least slightly better than

those of BPNs. However, the improvements are not substantial. Most of EANNs have

evolved only in initial weights of BPNs (AA, BA, CAT, DD and HON) only a few have

evolved both initial weights and structures of BPNs (GE, HON and HPQ). Only for GM

and IBM, evolved Elman RANs are selected.

6 Conclusions and Future Work

 ANNs have potentials to make a better forecasting of financial and economics

time series. In this paper, we go a step further to automatically evolve both initial and

structures (number of hidden nodes and number of hidden layers). Comparing with the

traditional Linear Regressions, the ANNs show promising results and most of our pro-

posed EANNs can improve the performances of the ANNs as we expected even the im-

provements are slights. There is an ample room for further researches. Firstly, the run-

ning time is quite long about 36 hours for each stock return forecast. This causes us, due

to limited computer power, unable to experiment with many populations and many gen-

erations as we initially wish. To run the experiment in parallel high performance com-

puter may show some more improvements. The EANN algorithm also can be modified

for further improvements such as introducing more variations of ANNs or selection of

inputs. To apply the EANN to other related forecasting problems such as to predict

stock volatilities, exchange rates, etc. is quite a natural step to do.

References

1. C. Zhou, “Forecasting long- and short- horizon stock returns in a unified framework,” Board

of Governors of the Federal Reserve System Finance and Economics Discussion Series FEDS,

Paper no. 96-4, Jan. 1996.

2. W.E. Shape, “Capital Assets Prices: A Theory of Market Equilibrium and Conditions

of Risk,” The Journal of Finance, 19(3), 1964, pp. 425-442

3. J. Lintner., “The Valuation of Risk Assets and the Selection of Risky Investments in

Stock Portfolio and Capital Budgets,” Review of Economics and Statistics, 47(1),

1965, pp. 13-37

4. S.A. Ross, “The Arbitrage Theory of Capital asset Pricing,” The Journal of Economic

Theory 13(3), 1967, pp. 341-360

5. R.R. Roll and S.A. Ross, “An Empirical Investigation of the Arbitrage Pricing The-

ory,” The Journal of Finance, 39(5), 1980, pp. 1073-1104
6. Y. Kwon, S. Choi and B. Moon, “Stock Prediction Based on Financial Correlation,” In Pre-

ceeding of GECCO 2005.

7. Y. Kwon and B. Moon, “A hybrid neurogenetic approach for stock forecasting,” IEEE Trans-

actions on Neural Networks, vol. 18, No. 3, pp. 851-864. May 2007.

8. X. Yao, “Evolutionary artificial neural networks,” Proceeding of the IEEE, vol. 87, No. 9, Sep.

1999.

9. J. Moody, “Forecasting the economy with neural nets : A survey of challenges and solutions,”

in Neural Networks : Tricks of the Trade, G. B. Orr and K. Muller, Eds., Berlin, Germany :

Springer-Verlag, 1998, pp. 347-371.

10. G. Armano, M. Marchesi and A. Murru, “A hybrid genetic-neural architecture for stock index-

es forecasting,” Information Sciences, vol. 170, pp. 3-33.

11. R. E. Oberuc, Dynamic Portfolio Theory and Management, New York, NY : McGraw-Hill,

2004.

