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A new methodology for clustering nonstationary time series with nonparametric 
regression model is proposed. The new methodology first use the projection pursuit 
regression models for formulating each time series and then use the measure of cross-
validation to calculating the similarity of fitted models and carry out the cluster analysis. 
Application of the proposed method is adopted in the collection of average personal 
income of 25 states in the US. Comparison with existing clustering method show several 
advantages of the proposed. 

 

1.   Introduction 

The study on time series clustering analysis is an important subject paid to 
growing attention in data mining, and its theory and application have been 
greatly put into study on fields such as biology, medicine, economy, finance, 
machine learning, signal analysis, gene recognition, and others. Cluster analysis 
is a general designation of data classification, the researchers use it to simplify 
and group the data. In general, it aims at identifying the similar series based on 
certain characteristics to make the elements within a cluster bear the high 
similarity to one another but is very dissimilar to the elements in the other 
clusters. The time series clustering (Xiong, 2004) can be divided into two major 
classes of distance based methods and model based methods. The non-model 
based methods assume that each series can be represented as a point in certain 
multi-dimensional space of fixed dimensionality, and then base on the similarity 
or distance measurement to group the data set. For example, the well-known K-
mean method assumes the data point with its each dimension being independent 
and then uses the Euclidean distance for clustering. Unfortunately, there is no 
natural distance function among time series data. Moreover, the problems of 
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unequal length, time delay, overall slower rate, premature cutoff, and 
correlation of each dimension in a time series will be overly emphasized by the 
distance measure. 

Generally the model based time series clustering takes a probability model 
or statistical model as assumption for describing the mechanism to generate the 
data. Under assumptions about the joint probability density function of series 
data and prior information, the probability model clustering can derive the 
maximization of posterior probability of cluster model as the foundation of 
clustering. For examples, the Markov methods and hidden Markov methods 
(HMM) are two sets of well known probability model based clustering methods. 
The study on statistical model based clustering of time series model is usually to 
assume the realizations as the linear parameterized stationary autoregressive 
(AR) or autoregressive and moving-average (ARMA) model, and then to cluster 
the time courses based on similarity measure of the feature function based on 
fitted models. The definition of feature function between stochastic models is an 
important study subject, such as weighted autoregressive coefficient distance 
(WAR), autocorrelation functions (ACF), principle component vector, discrete 
Fourier transform (DFT), discrete wavelet transforms (DWT) and series spectral 
transform. Since the statistical model based clustering methods take into the 
stochastic properties of time series, the interpretation of their clustering result is 
better and more reasonable than that of probability models based methods.  

In recent years, nonparametric time-series analysis has become a powerful 
statistical tool for exploring the underlying structure in a dataset and gained 
attention due to the limitations of autoregressive and moving-average models in 
describing various natural phenomena such as asymmetrical limit cycles, time 
irreversibility, amplitude-dependent frequency, and chaos. Let }{ tY  be a time 
series, the most general nonparametric p-th order autoregressive model can be 
defined as 

 1 2( , ,..., ) ,t t t t p tY f Y Y Y ε− − −= +  (1) 

where the random error tε  is i.i.d. with a zero mean and variance 2σ . In a linear 
regression setup, one assumes the response surface f  can be expressed as a 
linear combination of predictor variables. If inadequate, model scope can be 
extended by adding terms, such product or high-order predictors, to the model. 
Parametric regression models have advantages such as ease in computations, 
interpretations and forecasting. However, guessing which terms should be 
included in the function when many predictors exist in the model, and which is 
the most appropriate functional form is difficult when just looking at the data.  
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 Multivariate nonparametric smoothers only require a few assumptions; 
however, they frequently encounter the problem “curse of dimensionality,” 
which is a neighborhood with a fixed number of points that become less local as 
the dimensions increase (Hastie and Tibshirani, 1990). Several nonparametric 
regression approaches have been developed in response to this dimensionality 
problem. Generalized additive models (GAMs),  

 1 1( ) ( ) ,t t p t p tY f Y f Y ε− −= + + +L  (2) 

or projection pursuit regression (PPR) (Friedman and Switzer, 1981) overcomes 
this problem by using analogs of the Taylor explanation to approach a complex 
response surface. The mean function in GAMs is the summation of several 
univariate smooth and unknown functions ( ) 'jf s⋅ . Once the additive model is 
fitted to data, plots of smooth functions can be examined to assess the 
contributions of predictors in predicting a response. Although it can be applied 
to non-linear, non-Gaussian distributed or nonstationary cases, GAMs cannot 
deal with interactions between predictors. In such models, the projections are 
done onto individual predictors rather than onto a projection vector, which is the 
linear sum of the predictors, as in PPR. These projection vectors, instead of 
individual predictors, allow PPR to deal with interactions, which is the main 
property of PPR. Thus, this study applies the PPR model to overcome these 
problems, and estimate nonparametric models and clustering. 

The remainder of this paper is organized as follows. The existing time-
series clustering methods are introduced in Section 2. Section 3 describes the 
PPR clustering method and its basic concepts. This clustering method is applied 
to Average personal income in 1929–1999 in 25 US states, and compared with 
other clustering analysis methods in Section 4.  
 

2.   Literature Review 

2.1.   Statistical model based clustering 

The statistical-model-based clustering methods assume the series in the same 
cluster are from the same time-series model, such as common AR models, 
ARMA models or autoregressive integrated moving average (ARIMA) models. 
Ramoni et al. (2002) considered gene expression as an AR model, and applied 
the Bayesian method to perform clustering with an agglomerative algorithm. 
Xiong (2004) assumed data were mixtures of ARMA, and applied the 
Expectation Maximization (EM) algorithm (Dempster et al, 1976) to estimate 
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model parameters and calculate maximum posterior probability for a clustering 
model. Kalpakis et al. (2001) adopted the ARIMA time-series model, and 
applied the liner predictive coding cepstrum (LPC) (Furui, 1989) coefficient to 
extract coefficients of the time-series model. Trend and seasonality components 
were first removed from data, since stationary data can be well fitted with an 
autoregressive model of a certain order; thus, the LPC can be acquired through 
estimated autoregressive coefficients. Sequentially, the cluster result can be 
obtained by applying the partitioning around method (PAM) to the LPC.  

 

2.2.   Nonparametric model clustering  

Nonparametric regression allows one to estimate nonlinear fits between 
continuous variables with few assumptions about the functional space. This 
feature results in wide-ranging techniques that can be employed to numerous 
practical situations in diverse fields. In some current nonparametric clustering 
studies, the “time” factor is used as a predictive variable of a model; that is, 

 ( )t tY f t ε= +  (3) 

is the generation mechanism producing the series in each cluster. Luan and Li 
(2003) applied this model to cluster time-series data, gene expression was 
analyzed by a nonparametric mixed-effects model, and a parameter model was 
obtained based on the B-splines (De Boor, 1978) transform. One crucial step in 
this clustering method is to apply the EM algorithm to obtain maximum 
likelihood estimates; optimum clusters can then be determined by the Bayesian 
information criteria (BIC) evaluation. Ma et al. (2006) also demonstrated that 
gene expression changes over time; thus, different gene sequences have 
different characterization functions, and each gene can have the same stochastic 
effect in the same clusters. Notably, nonparametric regression was applied to 
estimate the mean curve of each series during clustering. James et al. (2003) 
proposed a clustering procedure that is applicable to various curve data but is 
especially useful when individuals are observed at a sparse set of time points.  
 

3.   Methodology 

3.1.   PPR Models 

The primary concept underlying projection pursuit regression (PPR) is as 
follows. Let Y  and 1 2( , ,..., ) 'pX X X X=  be the response and explanatory 
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vectors, respectively. Suppose one has observations iy  and corresponding 
predictors 1 2( , ,..., ) ',i i i ipx x x x=  .,,1 ni L=  Let 

0
,,, 21 Mααα L  be p-

dimensional unit “directional” vectors, and let 
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provides a good model for data. Formally, y and x  are assumed to satisfy the 
conditional expectation model,  

 
0

1 1
( | , , ) ( )M T

p y m m mm
E Y X X f Xμ β α

=
= + ∑L  (4) 

where mf  has been standardized to have mean zero and unity variance: 

 ( ) 0,T
m mE f xα =  2

0( ) 1, 1, , .T
m mE f x m Mα = = L  

Model parameters 0, , , 1, ,m m mf a m Mβ = L  in Eq. (4) minimize mean squared 
error 
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E Y f Xμ β α
=

− − ∑  (5) 

For instance, suppose 1 2 1 2( | , ) .E Y X X X X=
 
This is described by (4) with 

0 ,yμ = 0 2,M = 1 2 1/ 4,β β= = 1 (1,1) ,Ta = 2 (1, 1) ,Ta = − 2
1( ) ,f x x=

2
2 ( ) .f x x= −  Thus, this PPR model is a simple interaction model. Due to the 

length limitation of this work, researchers interested in the PPR estimation 
method can refer to Friedman and Switzer (1981).  

 

3.2.   PPR Clustering 

To apply the PPR model for time-series clustering, we assume the series in the 
same cluster are generated by the same model. Hence, if two sequences, iS

 
and 

jS , are similar, the fitted models im and jm can also reflect the similar 
structural relationship. Furthermore, if such a similar fitted model relationship 
exists, these fitted models should have similar predictive results for any 
sequence in two sequences. Thus, if predictive vector ˆ jy  is acquired by 
predictive series jS through fitted model jm , a similar predictive vector, ˆ̂

jy , 
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can be deduced through the im  fitted model of this predictive vector; and vice 
versa. Therefore, clustering can be processed through recursively searching two 
similar series or cluster according their fitted models. Cross validation (CV) is a 
model-selection method that takes the predictive ability of a model as the basis 
for model selection. The basic purpose of CV is to divide a dataset into two 
parts—a training set and testing set. For each series, this work fits a PPR model 
using training data, and validates the model using testing data. Thus, the concept 
of CV is applied to determine the similarity between two fitted models during 
the clustering process. Let 1{ , , }nS SL  be the set of time-series data that is 
divided into k

 
clusters 1{ , , }kC CL ; the PPR clustering method is described 

simply as follows:   
 
1. Initiate: Set the initial clusters { },i iC S= 1 .i n∀ ≤ ≤  

2. For any two clusters, { , },i jC C 1 ,i j n∀ ≤ < ≤ and calculate the CV value to 
determine the similarity between any two series: 
(a) (a) Thus, the PPR method is individually applied to fit { , }i jC C for 

obtaining the fitted model{ , }i jm m  and fit vectors ˆ ˆ{ , }i jy y .  

(b) Model im is applied to predict ˆ jy  for obtaining ˆ̂
jy ; at the same time, 

model jm is applied to predict ˆiy  for obtaining ˆ̂
iy . 

(c) Define
2 2

1 1

ˆ ˆˆ ˆ ˆ ˆ( ) ( )
( , )

2

ji n pn p

i i j j
i j

i j

y y y y
CV i j

n n p

−−

= =

− + −
=

+ −

∑ ∑
, where in  means the 

summation of all sequence lengths in cluster
iC . 

3. Define the upper triangular matrix [ ( , )]CV CV i j= of size n n× . 

4. Select two clusters, 
* *( , )

i j
C C , for meeting * *

,( , ) (min )i ji j
i j aug CV

<
= merged 

to the same clusters. Additionally, take 
* *,i j

CV as the CV* of this iteration.  

5. Cycle. Repeat steps 2–4 until the data merges as a cluster.  
 
The CV* value is calculated during clustering, as CV is a measurement of 
predictive ability of a fitted model. If the optimum number of a cluster is 
obtained, variance between clusters increases and variance within clusters 
decreases; thus, the CV* value increase markedly in the next recursion, and the 
optimum number of clusters can be determined based on these phenomena.  
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To evaluate clustering quality or compare clustering results with other 
methods proposed for similar time series clustering tasks, this work uses the 
cluster similarity measure developed by Gavrilov (2000) to assess the 
performance of clustering methods. Given two clustering sets,  

),,( 1 CGGG L= and ),,( 1 CAAA L= , the cluster similarity measure is defined by  

 ),(max1),(
1 1 ji

C

i Cj AGSim
C

AGsim ∑= ≤≤=  (6) 

where |)||/(|||2),( jijiji AGAGAGsim +∩= , G is the clustering for the “ground 
truth” and A is obtained by a cluster method under evaluation. 

 

4.   Real Data Analysis  

The data for demonstration analysis are personal annual average income for 25 
states in the US in 1929–1999. An economist divided high and low growth rates 
in personal income in 25 states into two clusters. The first cluster includes 17 
states (CT, DC, DE, FL, MA, ME, MD, NC, NJ, NY, PA, RI, VA, VT, WV, CA, 
IL) on the eastern seacoast; California and Illinois are areas with high growth 
rates in personal income. The second cluster includes 8 inland states (ID, TA, IN, 
KS, ND, NE, OK, SD); these states are areas with low growth rates in personal 
income. In cluster analysis, this work applied the PPR method to group these 25 
series into two clusters. In Table 5, p and M adopt the number of different 
candidate values used in the PPR clustering to assess the impact to performance. 
Table 1 shows analytical results. Clustering similarity was 0.762–0.802; thus, 
analytical results did not change obviously.  
 
The number of clusters is examined further. The arithmetic recursion is 
combined 24 times until all data are in one cluster, and the *CV value of each 
time is calculated for each recursion.  
 
The CV* value increases obviously between CV*(23)=374150.37 and 
CV*(24)=1744352.57 (Fig. 1); hence the optimum number of clusters is 2. 
Notably, this number of clusters agrees with the statement of 2 average personal 
income groups by the economists. 
 
Kalpakis (2001) first assumed all personal income data are ARIMA, and applied 
the different methods—LPC, DFT, DWT, PCA and MSE—to extract the 
coefficients, and then took the Euclidean distance between coefficients as the 
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basis for clustering. Table 2 compares clustering results. The PPR clustering 
similarity is 0.81, which approaches the current optimum clustering result.  

 
 

Table 1. Clustering quality of personal income for 25 US states with 
various orders.  

 
 M=1 M=2 M=3 M=4 M=5 

P=2 0.79 0.76 0.76 0.76 0.76 

P=3 0.79 0.79 0.79 0.79 0.79 
P=4 0.79 0.79 0.79 0.80 0.79 

 
 

 
FIGURE 1 The CV*value for personal income in 25 US states 

 
 

Table 2 Similarity of personal incomes in 25 US states clustered by 
various methods. 
 

Method PPR LPC DFT DWT PCA MSE 
Sim 0.81 0.84 0.68 0.60 0.68 0.78 
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