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Based on the locality assumption and the mean-variance analysis for the resource 
allocation in a two-stock portfolio, we design a system of optimized trading agents which 
act according to the theoretical suggestion whenever a critical threshold of the Sharpe 
ratio is surpassed. The agents represent specific trading strategies that are characterized 
by four parameters that can be tuned via an adaptive online learning setting. When the 
theoretical suggestion is adopted, the resource allocation will be initiated with a fine 
tuning execution factor that represents the level of commitment of the agent to the 
suggestion. Using the buy-and-hold strategy as the benchmark, this system of agents have 
statistically outperformed the benchmark for the various two-stock portfolio taken from 
the Hang Sang Index in terms of higher and more stable profits. 

1.   Introduction 

One of the interesting questions on portfolio management is to build a 
portfolio that has high return with low risk, and maintain this performance 
consistently over extended period. In this paper, we begin with the simplest 
portfolio of two stocks and apply the mean-variance analysis of Markowitz [1] 
to dynamically monitor the performance of the portfolio with real data taken 
from Hang Sang Index. Although the theory of mean variance analysis has been 
around for more than half a century, the dynamical implementation of the theory 
within the framework of multi-agent systems remains in its infancy. It is the 
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objective of this paper to build a collection of agents, each equipped with an 
investment strategy based on the mean-variance analysis, and use the principle 
of the survivor of the fittest to evolve these agents in order to achieve the goal of 
high return, low risk and consistent performance [2-4].  

One of the key assumptions we made concerns the locality of the stock 
daily data, in the sense that the return and volatility of stocks in the short period 
in the immediate past is assumed to be approximately followed [5,6]. Therefore, 
we do not make any attempt in forecasting the return and volatility. Our focus is 
on the competition of agents who all employ similar tools and have access to the 
same data base of past data. The agents are represented by strategies, which are 
characterized by parameters used in the portfolio management. With the locality 
assumption, daily trading strategies on the asset distribution among the portfolio 
are suggested by our approach. We compare the performance of the best 
strategy with a benchmark strategy, which is to buy the two stocks and hold on 
to them without trading over the entire period of the test. Our tests indicate that 
the performance of our collection of agents using simple-minded mean-variance 
analysis statistically outperform the buy-and-hold strategy. In some portfolios, 
the best agent can outperform with more than twice the return. In section 2, we 
describe the theory behind the formation of the agent. In section 3, we describe 
the rules we adopted for the evolution of the agents. We then test our multi-
agent systems on data taken from combination of stocks in the Hang Sang Index.  

2.   Trading strategies 

2.1.   Mean-variance theory 

In mean-variance analysis for two-stock portfolios, we need first to estimate the 
expected return U and variance Var of the stocks which are both parameterized 
by the sample size of the past data,   
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closing price of the stock. The standard deviation is ( ) ( )S t Var t= .  The sample 
size used is the first parameter in our model.  
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We now design a portfolio consistent with x fraction of total investment in 
allocated to stock 1 and 1-x invested in stock 2. We make the key assumption 
about locality in that the values of the rate of return within a local sampling 
subsequence can be specified by the same distribution. Thus U(t) is the 
estimation of r(t+1)=u. For two stocks, we can present a particular assignment 
of our portfolio as a point labeled by x in the mean-SD plane of the portfolio. 
For x=1 the point corresponds to ( )11 1( , ) ( ), ( )xu s u t s t= = and for x=0, we have 

( )20 2( , ) ( ), ( )xu s u t s t= = . For general x, we have the portfolio mean and variance 

given by 

  1 1 2 2( )u t u x u x≡ +  (3) 

 2 2
1 1 2 2 1,2 1 2( ) 2Var t Var x Var x Cov x x= + +  (4) 

where 1x x=  , 2 1-x x=  and ( ) ( )s t Var t= . Therefore, the portfolio at time 
t is described by the point ( )( , ), ( , )u t x s t x  on the mean-SD plane. At any given 

time, we can find the value of x between 0 and 1 so that ( , )( , ) ( , )
u t xF t x s t x=  is 

maximized. Let’s denote the maximum by  

 { }max( ) ( , ) max ( , ) | 0 1o ot F t x F t x xγ ≡ = ≤ ≤  (5)         

and the corresponding expected return and standard deviation by ( )( ), ( )o ou t s t .  

2.2.   Activation of Trading by a Sharpe ratio threshold 

We now propose a trading strategy adopted by the agent as follows,  
• On each trading day t, those agents with   ( )o

ctγ γ>   will suggest a 
modification of the existing portfolio to follow the suggested resource 
allocation change ( ) ( 1) ( ) ( )o o

cx t x t x t if tγ γ⇒ + = >  
• On each trading day t, those agents with   ( )o

ctγ γ≤   will sell all stocks 
and hold only cash. 

In this activation model, we introduce a second parameter 
cγ in our model. 

2.3.   Execution factor 

According to the suggestion in 2.2, the portfolio of an agent will be updated. If 
we describe the portfolio of an agent by a vector ( )1 2( ) ( ), ( ), ( )oA t A t A t A t≡ where 

( )oA t is the percentage of wealth corresponding to the holding in cash,  1( )A t  is 
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the percentage of wealth invested in stock 1, and 2 ( )A t  is the percentage of 

wealth invested in stock 2. Obviously we must have 1)(
2

0

=∑
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i tA as the 

normalization condition.  Similarly, we can describe the suggestion made in our 
activation model by a vector ( )1 2( ) ( ), ( ), ( )oB t B t B t B t≡  where ( )oB t  is the 

suggested percentage of wealth held in cash, 1( )B t  and 2( )B t  are the suggested 

percentage of holding in stock 1 and 2. Note that we also have 1)(
2

0
=∑

=i
i tB   

Now we introduce an execution factor E for the agent. This factor is a 
measure of how much trust the agent has on the result of the mean-variance 
analysis and the activation mechanism. The agent’s action will be defined by the 
following:  ( )( , ) ( ) ( )t E A t B t Eα ≡ − ×  .This vector ( , )t Eα is the vector 
defining the action the agent will take to align his existing portfolio vector 

( )A t with the suggestion ( )B t by mean-variance analysis by proper buying and 
selling of the stocks. His commitment to follow the suggestion is characterized 
by the execution factor which is a number between 0 and 1. The agent’s 
portfolio is updated by 

 ( 1) ( ) ( , )A t A t t Eα+ = +                            (6) 

The execution factor E is our third parameter.  

3.   Trading agents in adaptive online learning 

In section 2, we focus on the description of our agent in terms of its action and 
updating rule for its portfolio. There are three parameters introduced thus far: 
the sample size ( 1λ ) for measuring the mean return and variance, the critical 
threshold value of Sharpe ratio ( cγλ =2 ), and the execution factor ( E=3λ ). 
Each agent can in principle adopt different set of parameters: ( )1 2 3, ,λ λ λ λ= . 
We now set up a multi-agent systems consisting a set of N agents described by a 
corresponding set of parameters vectors: { ( , ) | 1,.., }j t j Nλ = . Note that we 
explicitly include a time dependence on the parameter vector since we expect 
that the agents will evolve with time. This evolution of parameters is necessary 
in view of our application of the locality assumption for a small sample size, 
since in general there is a trend that the mean and variance will evolve in a 
longer time frame. 

We now institute the competition among the agents, in the sense that we 
define a period T for the performance evaluation of these N agents and select 
the best performing agent (in terms of return of its portfolio net asset values at 
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the end of the evaluation period). As we move along the time series of the stock 
market, we find out that the best agent is different at different time period, so 
that defines a trajectory of the best agent parameter vector * ( )tλ in parameter 
space. One then has an elementary scheme for adaptive online learning to follow 
the best agent.  

In this paper, we avoid a complex online learning algorithm for the agents, 
which can easily modeled by genetic algorithm. We simply pre-define a set of N 
vectors { }( ) | 1,...,j j Nλ = at the beginning and ensure that these N vectors are 
distributed evenly in the three-dimensional parameter space. At each time step, 
we locate the best performing agent by its index. Thus, if the best performing 
agent is k at t, then we use * ( )kλ λ= . Our scheme is based on the simplest rule 
of following the leader. 

Recall that our evaluation of the N agents is over a period T. On each 
trading day, the performances of agents in the past period T are reviewed and 
the parameters of the best agent are copied as the current parameters for the 
strategy on this trading day. Therefore, in principle, we have a fourth parameter 
in our model, which is the period of performance evaluation.  

4.   Results  

We apply the above trading strategies to the Hang Seng Index (HSI) constituent 
stocks. The risk-free rate of return is assumed to be zero, which means the stock 
market will be our only investment instrument. The parameters we used are in 
the range: { }0.1,0.2,...,1.0E∈ , sample size in the range {20, 22,.., 30}, and  

{ }2.5 0.12* | 0,1, 2,.., 29c i iγ ∈ − + = . For HSI, there are 23 stocks which 
have been in HSI constituent list for the recent 8 years. For a two-stock 
portfolio, we have thus a total of 253(=23*22/2) two-stock portfolios. We 
simulate our trading strategies for all these portfolios in 1000 trading days (from 
March 2004 to February 2008). We compare our “follow-the-leader” portfolio 
with a buy-and-hold (BNH) strategy, which reflects the prospect of intrinsic 
performance of the selected stocks. If we choose stock 1 and 2, then the rate of 
return for the BNH strategy is defined by ,1 ,2( ) / 2BNH BNH BNHr r r= + . The rate of 
return by our portfolio management analysis is denoted as Pr . Both BNHr  and Pr  
for all the 253 portfolios are plotted in the Fig.1. Among all the 253 portfolios, 
there are 148 portfolios for which our trading strategy outscores BNH 
(

BNHP rr > ). The average of Pr  among all the 253 portfolios is 0.309, while the 
average of 

BNHr  is 0.123. In this sense, our strategy is 151% better.  
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We should also emphasize the excellent performance of our portfolio when 
the buy-and-hold strategy yields negative return, (

BNHr <0). Among the 253 pairs 
of stocks there are 88 such pair yield negative 

BNHr . However, among these 88 
pairs, 75 pairs yield better return than the BNH strategy using our strategy. For 
these 88 pairs, the average for 

BNHr  is -0.194, while the average of Pr  is 0.274 
This observation indicates the advantage and robustness of our multi-agent 
systems approach in portfolio management. This observation has also been 
verified for the constituent stocks in Dow Jones Industrial Average (DJIA). 
There are 25 stocks which have been in DJIA constituent list for the recent 8 
years. We can form a total of 300(=25*24/2) two-stock portfolios from DJIA. 
Among all the 300 pairs, there are 55 portfolios with negative

BNHr . For these 55 
portfolios, 35 of them have 

BNHP rr > .  For these 35 pairs, the average of 
BNHr  is   

-0.144, while the average of Pr  is 0.013.  
  

 
 

Figure 1. For HSI constituent stocks, the rate of return obtained by our “follow-the-leader” trading 
strategy is compared with the BNH rate of return. The x axis is ordered by the BNH rate of return of 
the 253 two-stock portfolios from HSI stocks. The cross is for the BNH strategy while the triangles 
are the “follow-the-leader” strategy. 

5.   Discussion  

From our test on HSI, we can make two observations. The first observation 
concerns the distribution of points in Fig.1. We see that the rate of return 
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obtained by our trading strategy is always distributed above -0.50 for all 
portfolios and sometime has a return as high as 2.5. We can interpret this as 
saying that the loss for our strategy is bounded by 50%, but the expected return 
can reach as high as 250%. The second observation concerns those portfolios 
with negative BNH rate of return. For these portfolios, our trading strategy leads 
to a better outcome for most of the cases. In HSI, not only does the average 
return over 253 portfolios is better then BNH, the return is usually positive even 
though the BNH rate of return of the portfolio is negative. This ability to 
squeeze profits from two decreasing stocks suggests that our algorithm for the 
follow-the-leader strategy in our multi-agent-systems presents valuable insight 
in the mean-variance analysis of portfolio, in that it performs well even in a bear 
market. Our future research will address the issue of extending our theory to 
include more than two stocks in the portfolio, as well as an intelligent evolution 
of online learning for our agents in the multi-dimensional parameter space [7,8].  

Acknowledgments 

K.Y. Szeto acknowledges the support of the grant CERG 602506 and 602507.  

References 

1. H. Markowitz, J. of Finance, Vol.7, 77, (1952) 
2. K.Y. Szeto, K.H. Cheung, “Multiple time series prediction using genetic algorithms 

optimizer,” Proceedings of the International Symposium on Intelligent Data 
Engineering and Learning, Hong Kong, IDEAL'98, 127-133, 1998. 

3. K.Y. Szeto, L.Y. Fong, “How adaptive agents in stock market perform in the 
presence of random news: a genetic algorithm approach,” LNCS/LNAI, Vol. 1983, 
Ed. K. S. Leung et al. Spriger-Verlag, Heidelberg, 2000, IDEAL 2000, 505-510, 
2000.  

4. Alex L.Y. Fong and K.Y. Szeto, Rule Extraction in Short Memory Time Series 
using Genetic Algorithms; European Physical Journal B Vol.20, 569-572(2001) 

5. Ran El-Yaniv, “Competitive solutions for online financial problems”, ACM 
Computing Surveys, Volume 30, (March 1998) 28 - 69. 

6. Gen-Huey Chen, Ming-Yang Kao, Yuh-Dauh Lyuu, and Hsing-Kuo Wong, 
“Optimal buy-and-hold strategies for financial markets with bounded daily returns”, 
Proceedings of the thirty-first annual ACM symposium on Theory of computing, 
1999, 119 – 128. 

7. B.A. Huberman, R.M. Lukose, T. Hogg, “An economics approach to hard 
computational problems,” Science, Vol.275, No.3: 51~54, 1997 

8. K.Y. Szeto and J. Zhang, “Adaptive Genetic Algorithm and Quasi-parallel Genetic 
Algorithm: Application to Knapsack Problem”, LSSC Sozopol, June 2005, Lecture 
Notes in Computer Science Vol. 3743, Springer Berlin, Heidelberg, 2006, pp. 189-
196. 

 


