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1. Introduction

The cross entropy method has been well introduced in1 and was motivated
as an adaptive algorithm for estimating probabilities of rare events in com-
plex stochastic networks. In such a situation, a Monte Carlo simulation
which draws instances from the true distribution of events would require
an inordinate number of draws before enough of the rare events were seen
to make a reliable estimate of their probability of occurring. It was soon re-
alized that the cross entropy method can also be applied to solving difficult
combinatorial and continuous optimization problems with a simple modi-
fication of the method. Generally speaking, the basic mechanism involves
an iterative procedure of two phases:

(1) draw random data samples from the currently specified distribution.
(2) identify those samples which are, in some way, “closest” to the rare

event of interest and update the parameters of the currently specified
distribution to make these samples more representative in the next
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iteration.

In this paper, we wish to apply the method of cross entropy to the N-persons
Iterated Prisoner’s Dilemma, an abstract mathematical game which has
close links to the formation of oligopolies.2

2. The Cross Entropy Method

The Cross Entropy method is best approached from the perspective of its
use in estimates of statistics concerning rare events such as the probability
measure associated with the rare event.

2.1. The Cross Entropy Method for Rare Event Simulations

Let l = (S(x) > γ) be the event in which we are interested and typically
we will be interested in problems in which l is very small. We could use
Monte Carlo methods to estimate l but if l is very small this would lead
to a very large number of samples before we could get reliable estimates of
l. The cross entropy method uses importance sampling rather than simple
Monte Carlo methods: if the original pdf of the data is f(x), then we require
to find a pdf, g(x), such that all of g()’s probability mass is allocated in
regions in which the samples are close to the rare-event. More formally, we
have the deterministic estimate

l =
∫

I{S(x)>γ}f(x)dx =
∫

I{S(x)>γ}
f(x)
g(x)

g(x)dx = Eg()

[
I{S(X)>γ}

f(X)
g(X)

]
.

(1)
where IL is the indicator function describing when L in fact occurred. An
unbiased estimator of this is

l̂ =
1
N

N∑

i=1

I{S(Xi)>γ}
f(xi)
g(xi)

=
1
N

N∑

i=1

I{S(Xi)>γ}W(f(xi), g(xi)) (2)

where W() is known as the likelihood ratio.
The best g() in (1) is g∗(x) = I{S(x)>γ}f(x)

l , which would have the same
shape as f() but all its probability mass in the interesting region. Note that
for the optimal g(),

∫
x:S(x)>γ

g ∗ (x)dx = 1 while
∫
x:S(x)>γ

f(x)dx = l.
However we don’t know l. So we pick a family of PDFs g(x,v), para-

meterised by v and minimise the Kullback Leibler divergence between g∗

and g(),

min KL(g∗, g) =
∫

g∗(x) ln g∗(x)dx−
∫

g∗(x) ln g(x,v)dx (3)
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So we maximise the cross entropy
∫

g∗(x) ln g(x,v)dx.
We pick v = arg max

∫ I{S(x)>γ}f(x)

l ln g(x,v)dx, and we may discard
l, a constant. But getting an optimal g(x,v) for a particular γ may not
be an easy task. Therefore we create a set of γt for which we estimate the
corresponding vt. The γt are chosen such that

P (x : S(x) > γt) > P (x : S(x) > γt+1) (4)

i.e. at each iteration, the events are becoming more rare under f(). Thus

max
∫

I{S(x)>γ}f(x) ln g(x,v)dx (5)

= max
vt

∫
I{S(x)>γt}

f(x)
g(x,vt−1)

ln g(x,vt)g(x,vt−1)dx (6)

= max
vt

Eg(x,vt−1)

{
I{S(x)>γt}W(f(x), g(x,vt−1)) ln g(x,vt)

}
(7)

Since we are working with samples, we pick vt to maximise

max
vt

1
N

N∑

i=1

I{S(xi)>γt}W(f(xi), g(xi,vt−1)) ln g(x,vt) (8)

For example, if g(x,v) = 1√
2πσ2 e−

1
2 (x−µ

σ )2 , we find minimum of

1
N

N∑

i=1

I{S(xi)>γt}Wt−1

{
ln(σ) +

1
2σ2

(x− µ)2
}

(9)

We calculate the derivative of this with respect to the parameters, and set
this equal to 0, to determine

µ̂ =
∑N

i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)xi∑N
i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)

(10)

σ̂2 =
∑N

i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)(xi − µ̂)2
∑N

i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)
(11)

2.2. Cross Entropy Method for Optimization

For optimization, we turn the problem into the so-called associated stochas-
tic problem(ASP) first. The basic method is

• Generate random samples from the associated stochastic problem using
some randomization method.

• Update the parameters to make the production of better samples more
likely next time.
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Note that, unlike the rare event simulations, we do not have a base para-
meterisation to work to and hence we don’t have the W (Xi,u, v̂t−1) term
in the calculation.

We usually wish to maximize some performance function S(x) over all
states x in data set ℵ. Denoting the maximum by γ∗ = maxx∈ℵ S(x) Thus,
by defining a family of pdfs {f(. ;v),v ∈ ν} on the data set ℵ, we follow3

to associate with this the following estimation problem

l(γ) = Pv(S(x) ≥ γ)) = EvI{S(x)>γ} (12)

where x is a random vector with pdf f(. ;v),v ∈ ν. Thus we create a se-
quence f(. ;v0), f(. ;v1), f(. ;v2), . . . of pdfs that are optimized in the di-
rection of the optimal density and for the fixed γ̂t and v̂t−1, we derive the
γ̂t from the following program

max
v

D̂(v) = max
v

1
N

N∑

i=1

I{S(Xi)>γ̂t} ln f(Xi;v) (13)

3 shows that if we have a finite support discrete distribution such as
the Bernoulli distribution, then we can have the elements of the probability
vector updated according to

p̂t,ij =
∑Nelite

k=1 IS(xk)>γ̂t
Ixki=j∑Nelite

k=1 IS(xk)>γ̂t

(14)

where p̂t,ij is the estimated probability that the ith element of the probabil-
ity vector will equal j at iteration t. This is the method we use in this paper.
We also use the smoothing technique of3 so that the parameter vector at
time t is

µ̃t = αµ̂t + (1− α)µ̃t−1 (15)

where µ̂t is the outcome of the calculation (??) and α = 0.2.

3. The Iterated Prisoner’s Dilemma

The 2-players’ Prisoner’s Dilemma was peoposed by Merrill Flood and
Melvin Dresher, and formalised by Albert Tucker in 1950 and is well known
to researchers in the artificial intelligence and economics fields. The story of
the prisoners’ dilemma is based on two men, charged with a joint violation
of a law, and held separately by the police. Each is told that

(1) if one confesses and the other does not, the former will be given a
reward and the latter will be jailed.
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(2) if both confess, each will be fined.

At the same time, each has good reason to believe that if neither confesses,
both will go clear.

The N-player Prisoners’ Dilemma game can be defined by the following
three properties:

(1) each player faces two choices between cooperation (C) and defection
(D);

(2) the D option is dominant for each player;
(3) and the dominant D strategies intersect in a deficient equilibrium. In

particular, the outcome if all players choose their non-dominant C
strategies is preferable from every player’s point of view to the one
in which everyone chooses D, but no one is motivated to deviate uni-
laterally from D.

Thus the payoff matrix can be represented as in Table 1 which shows
the gain for a single prisoner in a population of N players. It is important to
note that the return is dependent on the actions of the other N − 1 players
in the population. The term Ci (Di) refers to the payoff to the current
strategy if it cooperates (defects) when there are i other cooperators in the
population.

Number of Cooperators 0 1 2 · · · N − 1
Cooperate C0 C1 C2 · · · CN−1

Defect D0 D1 D2 · · · DN−1

The payoff matrix of the NIPD must satisfy

(1) It pays to defect: Di > Ci,∀i ∈ {0, . . . , N − 1}.
(2) Payoffs increase when the number of cooperators in the population

increases: Di+1 > Di and Ci+1 > Ci, ∀i ∈ {0, . . . , N − 1}
(3) The population as a whole gains more, the more cooperators there are

in the population: Ci+1 > (Ci+Di+1)
2 ,∀i ∈ {0, . . . , N − 2}.

Notice that this last gives a transitive relationship so that the global max-
imum is a population of cooperators.

We have previously investigated the evolution of cooperation in the IPD
with evolutionary algorithms,2,4 artificial immune systems5 and reinforce-
ment learning. In the next section, we use the Cross Entropy method.
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3.1. CE for NIPD

We encode the problem so that the first position in the probability vector
gives the probability that the strategy will cooperate (”1”) or defect (”0”)
on the first round. In round 2, the decision taken by each agent depends
on whether he himself cooperated or defected in the first round and how
many other cooperators there were. Thus we have 2*N+1 bits. In round 3
the decision depends on the strategy’s previous decisions: DD, CD, DC, or
CC. Within each block there are (N + 1) ∗ (N + 1) histories determined by
the number of cooperators in each of the first two rounds, i.e., 00, 10, 20,
30, 01, 11, 21, and so on. The fourth and subsequent round decisions use a
memory of the previous three rounds.

The probability vector is initialised to 0.5 in every position. At each
instant in time, we generate M samples from the current distribution. For
each sample, we generate K sets of N−1 players to play with, one of which is
the current sample itself. Each group of N samples plays R rounds, typically.
Unless stated otherwise, M =1000, K = 10 and R = 20. The payoffs for
each cooperator is 2n if there are n cooperators in the population while
each defector earns 2n + 1.

In our previous investigations with genetic algorithms etc., we have
found that cooperation is more difficult to achieve as the number of players
increases: typically, when N = 6 or 7, total cooperation becomes impossible
to achieve. This is also our finding with the basic Cross Entropy method:
partial cooperation is achieved but the global optimum is not.

However we have found that by adding noise to the simulation and
decreasing the amplitude of the noise, we can achieve greater cooperation.
Typically we add noise drawn from a uniform distribution U [−0.1, 0.1] after
the usual update of the probability vector and then re-normalise so that
the probabilities sum to 1.

Moreover, we can with the CE method hope to get cooperation in even
larger problems. Typically the sole defection is in the first element of the
probability vector. For example, in the 15 IPD, the probability vector is
greater than 8×163, the last part of the probability vector which is used in
rounds 4 to 20. This section of the probability vector is greater than 4000
dimensional and the evaluation of the performance function is dominated by
this part. Thus early in the simulation this part dominates and if, by chance,
the elite samples happen to defect in round 1, that is what is learned by the
probability vector. The noise gives some chance to partly escape from local
optima. Figure 1 shows a 20 IPD simulation under the same conditions.
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Fig. 1. Left: the number of times total cooperation was achieved in the 20 IPD simu-
lation. Right: the number of times total defection was achieved. The amplitude of the
noise declined to 0 during the first half of the simulation and remained 0 subsequently.

4. Conclusion

The resulting implementation of the Cross Entropy algorithm is very like
Population Based Incremental Learning,6 however, whereas that algorithm
was introduced as an heuristic abstraction of the Genetic Algorithm, the
Cross Entropy method comes with strong theoretical credentials.
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