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ABSTRACT. Bounded rationality and heterogeneity have been developed in the re-
cent asset pricing literature to explain complicated market behaviour, such as market
booming and crashes, and various stylized facts in high frequency data, such as fat
tails, volatility clustering and power-law behaviour in returns, which are difficult to
be explained by the standard asset pricing theory based on rational expectations and
representative agent paradigm. Guided by theoretical analysis, numerical simulations
of those structure models have demonstrated a great success to generate and explain
most of these stylized facts. However calibration of these heterogeneous agent models
to the most of these stylized facts, in particular fat tail in return distribution and long-
range dependence in return volatility, seems difficulty so far. This paper calibrates the
simplest market fraction asset pricing model of fundamentalists and trend followers
we have developed recently to the power-law behaviour of the DAX 30. With the pa-
rameter values of the calibrated model, we show that the autocorrelations (of returns,
the absolute returns and the squared returns) of the market fraction model share the
same pattern for the DAX 30. By conducting econometric analysis via Monte Carlo
simulations, we characterize these power-law behaviors and find that estimates of the
power-law decay indices, the (FI)GARCH parameters, and the tail index of the cal-
ibrated market fraction model match closely to the corresponding estimates for the
DAX 30. The results strongly support the explanation power of the heterogeneous
agent models.

JEL Classification: C15, D84, G12
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1. INTRODUCTION

Traditional economic and finance theory is based on the assumptions of investor
homogeneity and rational expectations. Since agents are rationally impounding all rel-
evant information into their trading decisions, the movement of prices is assumed to
be perfectly random and hence exhibit random walk behaviour. This view is important
in empirical finance because it is the theoretical underpinning of the efficient markets
hypothesis and asset pricing theories generally, including the optimal portfolio rules
developed by Markowitz (1952) and Merton (1971), the static and intertemporal cap-
ital asset pricing model of Sharpe (1964), Lintner (1965), Mossin (1966) and Merton
(1974) and models for the pricing of contingent claims beginning with the work of
Black and Scholes (1973). The impressive statistical evidence in favour of market ef-
ficiency, documented by Fama (1976), has been taken as support for the random walk
model and for a long time financial economists were contented with this view as the
explanation of the time series behaviour of observed asset prices.

Empirical investigations of (high-frequency) financial time series in both equity and
foreign exchange markets, however, show some common features, the so-called styl-
ized facts. They include excess volatility (relative to the dividends and underlying
cash flows), skewness, excess kurtosis, fat tails (the tails of distribution have a higher
density than what is predicted by normal distribution, which conventionally was in-
dicated by excess kurtosis), volatility clustering (high/low fluctuations are followed
by high/low fluctuations), long-range dependence in volatility (often characterized by
slow decay of autocorrelations of squared or absolute returns), and various power-law
behaviour. We refer to Pagan (1996) for a comprehensive discussion of stylized facts
characterizing financial time series and Lux (2004) for a recent survey on empirical
evidence of various power laws. These facts are not entirely contradicted with the
traditional economic and finance theory with representative agent and rational expec-
tations, but the theory does not provide persuasive explanation on a large subset of
these facts.

Various statistical models have been developed recently to characterize some of
these facts successfully. Among the stylized facts, fat tail has been found across fi-
nancial markets since the work of Mandelbrot (1963)1. Various statistical models
have been developed to explain the power-law behavior. For instance the very pop-
ular (in standard textbooks on theoretical and empirical finance) GARCH processes,
introduced in Engle (1982), model returns as a random process with a time-varying
variance that shows autoregressive dependence. These models produce fat tails of the
unconditional distribution and capture the short-run dynamics of volatility autocorrela-
tions. However, the implied decay of the volatility autocorrelation is exponential rather
than hyperbolic. Volatility clustering and long-range dependence (that is, insignificant
autocorrelations (ACs) of raw returns and hyperbolic decline of ACs of the absolute
and squared returns) have been extensively studied since the seminal paper of Ding,
Engle and Granger (1993). Other popular statistical models include the ARCH-class
1For a recent example, see the study by LeBaron and Samanta (2005) on international equity markets
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model and Markov switching model, see Bollerslev st al. (1994) and Hamilton (1994)
for numerical applications. These models are quite successful in modeling some of
these stylized facts, but they do not offer any economical explanation and generating
mechanism of the facts.

As a result the literature witnessed increased attempts of modeling the financial
markets by incorporating heterogeneous agents and bounded rationality, see recent
surveys by Hommes (2006), LeBaron (2006), and Lux (2004). These models char-
acterize the dynamics of financial asset prices resulting from the interaction of het-
erogeneous agents having different attitudes to risk and having different expectations
about the future evolution of prices. One of the key aspects of these models is that
they exhibit feedback of expectations—the agents’ decisions are based upon predic-
tions of future values of endogenous variables whose actual values are determined by
equilibrium equations. In particular, Brock and Hommes (1997, 1998) proposed an
Adaptive Belief System model of economic and financial markets. The agents adapt
their beliefs over time by choosing from different predictors or expectations functions,
based upon their past performance. The resulting nonlinear dynamical system is, as
Brock and Hommes (1998) and Hommes (2002) show, capable of generating a wide
range of complex price behavior from local stability to high order cycles and chaos. It
is very interesting to find that adaptation, evolution, heterogeneity, and even learning,
can be incorporated into the Brock and Hommes type of framework, see, Gaunersdor-
fer (2000), Hommes (2001, 2002), Chiarella and He (2001, 2002, 2003b), Chiarella et
al. (2002), De Grauwe and Grimaldi (2006) and Westerhoff (2003). Moreover, recent
works by Westerhoff (2004), Chiarella et al. (2005, 2006) and Westerhoff and Dieci
(2006) show that complex price dynamics may also result within a multi-asset market
framework. This broader framework also gives rise to rich and complicated dynamics
and can be used to obtain a deeper understanding of market behavior. They are capable
of explaining various market behaviour, such as the deviation of the market price from
the fundamental price, market booming and crashes.

One of the most interesting questions for the above heterogeneous agent models
(HAMs) is how well they can explain the stylized facts. In most of this literature so
far, numerical simulations have been used to show that the models are able to gen-
erate some of the stylized facts of financial markets, including volatility clustering,
skewness, kurtosis and fat tails, but not all. In particular, to explain the long-range
dependence in asset returns within this framework seems a challenge task.

Recently, a number of power laws2 have been found in financial series. This has
spurred attempts at a theoretical explanation by using HAMs and the search for an
understanding of the underlying mechanisms responsible for such power laws3. Multi-
plicative stochastic processes (with multiplicative and additive stochastic components)
2They include power-law distribution of large returns, hyperbolic decline of return autocorrelation func-
tion, temporal scaling of trading volume and multi-scaling of higher moments of returns.
3For instance, Farmer et al. (2004) attribute the power-law behavior in return distribution to liquid-
ity fluctuation using market microstructure approach. We refer to Lux (2004) for a recent survey on
empirical evidence, models and mechanisms of various financial power laws.
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have been used to explain the power-law behavior in rational bubble models (see
Kesten (1973) and Lux (2004)). However, as shown by Lux and Sornette (2002), the
range of the exponent required for the rational bubble models is very different from
the empirical findings. In addition, the rational bubble models share the conceptual
problems of economic models with fully rational agents. Herding models of finan-
cial markets have been developed to incorporate herding and contagion phenomena.4

Lux and Marchesi (1999) argue that the indeterminateness of the market fractions in a
market equilibrium and the dependence of stability on the market fractions exist in a
broad class of behavioral finance models, which is further supported by Giardina and
Bouchaud (2003) and Lux and Schornstein (2005). With a stripped down version of an
extremely parsimonious stochastic herding model with fundamentalists (who trade on
observed mispricing) and noise traders (who follow the mood of the market), Alfarano
et al. (2005) show that their herding model is able to produce relatively realistic time
series for returns whose distributional and temporal characteristics are astonishingly
close to the empirical findings. This is partly due to a bi-modal limiting distribution
for the fraction of noise traders in the optimistic and pessimistic groups of individuals
and partly due to the stochastic nature of the process leading to recurrent switches from
one majority to another. A mechanism of switching between predictors and co-existing
attractors is used in Gaunersdorfer and Hommes (2000) to characterize volatility clus-
tering5. The highly nonlinear deterministic system may exhibit co-existence of differ-
ent types of attractors and adding noise to the deterministic system may then trigger
switches between low- and high-volatility phases. Their numerical simulations show
quite satisfactory statistics between the simulated and actual data. However, the com-
parison with empirical facts is mainly based upon visual inspection, or upon a few
realizations of the model without estimating the power-law indices.

In contrast to theoretical oriented models discussed above, there is also a rapidly
expending literature of HAMs which are computational oriented and we refer this to
a recent survey paper by LeBaron (2006). Computational HAMs are becoming in-
creasingly important and they have been proved to be vert powerful to resembling the
stylized facts, in particular, various power-law behaviours. One of the most important
advantages of this approach is that many behavioural aspects at the micro level and
details of the interacting agents can be aggregated at the macro level through computer
simulations. However, as pointed by Hommes (2006), this approach face a problem of
too many degree of freedom and too many parameters, which makes it difficult to as-
sess the main causes of observed stylized facts. Even some of the theoretical oriented
HAMs share the same problem. This problem makes the estimation and calibration of
the HAMs model to financial data difficult.

There are a few recent attempts to estimate HAMs on economic or financial data.
Baak (1999) and Chavas (2000) estimate a HAM on hog and beef market data and
4See Kirman (1991, 1993), Lux (1995, 1997, 1998), Lux and Marchesi (1999), Chen et al. (2001), Aoki
and Yoshikawa (2002), and Alfarano et al. (2005).
5Other behavioral finance explanations for volatility clustering exist. Manzan and Westerhoff (2005)
develop a model in which traders tend to over or under-react to the arrival of new information.
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find evidence for heterogeneity of expectations. Winker and Gilli (2003) and Gilli and
Winker (2003) estimate the exchange rate herding model of Kirman (1991) to the daily
DM-US$ exchange rate and find significant switching of agents between fundamen-
talists and chartists. Other estimations of HAMs include Westerhoff and Reitz (2003)
to exchange rate, Manzan (2003) and Boswijk et al. (2005) to yearly S&P 500 index,
and Alfarano et al. (2005) to daily gold price returns, exchange rates and the DAX
index. Recently, Amilon (2008) estimates two specifications of the extended Brock
and Hommes switching models described in De Grauwe and Grimaldi (2003, 2006) to
daily S&P 500 index by the use of efficient method of moments and maximum likeli-
hood and compares the results to real data and more traditional econometric models.
He finds that the model is able to generate some stylized facts, but fit is generally quite
poor.

In terms of the comparison of the econometric characterizations between the simu-
lation models and the actual data. Usually we do not have available a single simulation
model, but a whole class, where each simulation model in the class corresponds to
different parameter values, initial conditions, and so on. Preferably, we would like
to be able to estimate the appropriate simulation model in this model class. Gener-
ally, however, this seems to be infeasible, due to the complexity of the microscopic
simulation models, which makes verification of identification rather difficult, and thus
proving consistency of estimation troublesome. Moreover, in case consistent estima-
tion is possible, the likely heavily nonlinear relationship between observables and un-
known parameters to be estimated might seriously complicate estimation. Therefore,
in this paper, we only consider calibration of a model in a class of the market fraction
(MF) model established in He and Li (2008, 2007), by choosing some model in the
model class that minimizes a distance between particular actual data based parameters
and simulation model based parameters, restricting attention to a subset of simulation
models.

One of important issues in dealing with the estimation and calibration, as pointed
out by Hommes (2006), is “to understand the generating mechanism of the stylized
facts, one would like to find the simplest HAM with a plausible behavioural story at
the micro level, that still captures the most important stylized facts observed at the
aggregate level. · · · . Simple and parsimonious HAMs can thus help to discipline the
wilderness of agent-based modeling”. It is this principle that guides the calibration of
the MF model to the DAX 30 in this paper. The MF model is a simple stochastic asset
pricing model, involving two types of traders (fundamentalists and trend followers) un-
der a market maker scenario. He and Li (2008) explained various aspects of financial
market behavior and established the connection between the stochastic model and its
underlying deterministic system. Through a statistical analysis, He and Li (2008) show
that convergence of market price to fundamental value, long- and short-run profitabil-
ity of the two trading strategies, survivability of trend followers and various under-
and over-reaction autocorrelation patterns of the stochastic model can be explained by
the dynamics, including the stability and bifurcations, of the underlying deterministic
system. Based on these results, He and Li (2007) studied the generating mechanism
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of the MF model to produce the volatility clustering and the long-range dependence of
asset returns. The results show that heterogeneity, risk-adjusted trend chasing through
a geometric learning process, and the interplay of a stable deterministic equilibrium
and stochastic noisy processes can be the source of power-law distributed fluctuations.
The power-law behaviour is further verified by econometric estimates via a Monte
Carlo simulation. The analysis of generating mechanism and power-law decay esti-
mation based on simulations in He and Li (2007) provide a promising prospective for
calibration of the MF model to financial data in this paper.

In this paper, we first calibrate the MF model to the daily DAX index in terms of the
power-law behavior in volatility. With the parameter values of the calibrated model, we
show that the autocorrelations of returns, the absolute returns and the squared returns
of the market fraction model share the same pattern for the DAX 30. By conducting
econometric analysis via Monte Carlo simulations, we then characterize these power-
law behaviors and find that estimates of the power-law decay indices, the (FI)GARCH
parameters, and the tail index of the calibrated market fraction model match closely to
the corresponding estimates for the DAX 30. Interpretation of the calibrated param-
eters shows a consistence with the power-law behaviour generating mechanism in He
and Li (2007). The results provide a very positive evidence on the explanation power
of the HAMs.

The remainder of the paper is organized as follows. Section 2 reviews the MF model.
In Section 3 we first calibrate the MF model to the power-law behaviour in return
volatility of the the DAX 30 stock market daily closing price index. We then estimate
the power-law decay parameters of the autocorrelation of returns, the squared returns
and the absolute returns, (FI)GARCH(1,1) parameters, and the power-law decay rates
of the tail distribution for both the DAX 30 index and MF model-generated data. In
Section 4, we present an explanation of the calibrated parameters of the MF model.
Section 5 concludes.

2. THE MARKET FRACTION MODEL WITH HETEROGENEOUS EXPECTATIONS

The market fraction (MF) model considered in this section is a standard discounted
value asset pricing model with heterogeneous agents. It is closely related to the frame-
work of Brock and Hommes (1997, 1998) and Chiarella and He (2002). We outline
the model and refer the readers to He and Li (2008) for full details.

Consider an economy with one risky asset, one risk free asset, and two types of
traders with different beliefs or expectations on the future price of the risky asset. It
is assumed that the risk free asset is perfectly elastically supplied at gross return of
R = 1 + r/K, where r stands for a constant risk-free rate per annum and K stands for
the trading frequency measured in units of a year.6 Let Pt and Dt be the (ex dividend)
price and dividend per share of the risky asset at time t, respectively. The first type of

6Typically, K = 1, 12, 52 and 250 for trading period of year, month, week and day, respectively. To
calibrate the stylized facts observed from daily price movement in financial market, we select K = 250
in our discussion.
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investors is called the fundamentalists (or informed traders) with a market fraction of
population of n1. The second type of investors is called trend followers (or uninformed
traders) with a market fraction of population of n2. Note that n1 + n2 = 1. Let
m = n1 − n2 ∈ [−1, 1], then m = 1(−1) corresponds to the case when all the traders
are the fundamentalists (trend followers).

For investor i, let Wi,t be his/her initial wealth and zi,t be the number of shares of
the risky asset held by the investor at t. Then the portfolio wealth of the investor i at
t + 1, Wi,t+1, is given by

Wi,t+1 = RWi,t + [Pt+1 + Dt+1 −RPt]zi,t. (2.1)

Let Eh,t and Vh,t be the beliefs of type h (h = 1, 2) traders about the conditional
expectation and variance of quantities at t + 1 based on their information at time t.
Denote by Rt+1(= Pt+1 + Dt+1 − R Pt) the excess capital gain on the risky asset at
t + 1. Assume that trader of type h has a constant absolute risk aversion (CARA)
utility functions with the risk aversion coefficient ah (e.g. Uh(W ) = − exp(−ahW )).
By expected utility maximization, the optimal demand on the risky asset of trader of
type h is given by

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
, h = 1, 2. (2.2)

Assume zero supply of outside shares. Then, using (2.2), the population weighted
aggregate excess demand ze,t is given by

ze,t ≡ n1z1,t + n2z2,t =
1 + m

2

E1,t[Rt+1]

a1V1,t[Rt+1]
+

1−m

2

E2,t[Rt+1]

a2V2,t[Rt+1]
. (2.3)

We assume that the market price is determined by a market maker who cleans the
market by taking a long (when ze,t < 0) or short (when ze,t > 0). At the end of period
t, after the market maker has carried out all transactions, he or she adjusts the price for
the next period in the direction of the observed excess demand with a speed of price
adjustment of µ. To capture unexpected market news or the excess demand of noise
traders, we introduce a noisy demand term δ̃t which is an i.i.d. normally distributed
random variable with δ̃t ∼ N (0, σ2

δ ). Based on these assumptions and (2.3), the market
price is determined by

Pt+1 = Pt +
µ

2

[
(1 + m)

E1,t[Rt+1]

a1V1,t[Rt+1]
+ (1−m)

E2,t[Rt+1]

a1V2,t[Rt+1]

]
+ δ̃t. (2.4)

We now turn to discuss the beliefs of fundamentalists and trend followers. Denote
by Ft = {Pt, Pt−1, · · · ; Dt, Dt−1, · · · } the common information set formed at time
t. We assume that, apart from the common information set, the fundamentalists have
superior information on the fundamental value, P ∗

t , of the risky asset, which is assumed
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to follow a stationary process7

P ∗
t+1 = P ∗

t exp(−σ2
ε

2
+ σεε̃t), ε̃t ∼ N (0, 1), σε ≥ 0, P ∗

0 = P̄ > 0,

(2.5)
where ε̃t is independent of the noisy demand process δ̃t. This specification ensures
that neither fat tails nor volatility clustering are brought about by the exogenous fun-
damental price process. Hence, any non-normal pattern in risky asset return, discussed
below, would be driven by the trading process itself.

The fundamentalists know of trend followers and consequently believe that the stock
price may be driven away from its fundamental value. More precisely, we assume that
the conditional mean and variance of the fundamental traders are, respectively

E1,t(Pt+1) = Pt + α(P ∗
t+1 − Pt), V1,t(Pt+1) = σ2

1, (2.6)

where σ2
1 stands for a constant variance of the fundamental value, and α ∈ [0, 1]

is the fundamentalists’ speed of price adjustment toward the fundamental value. In
general, the fundamental traders believe the market is efficient and prices converge to
the expected fundamental value. A high (low) weight of α leads to a quick (slow)
adjustment of expected prices towards the fundamental prices.

The trend followers, unlike the fundamental traders, are technical traders who be-
lieve the future price change can be predicted from various patterns or trends generated
from the history of prices. The trend followers extrapolate the latest observed price
change over a long-run sample mean of the history prices and to adjust their variance
estimate accordingly. More precisely, their conditional mean and variance satisfy

E2,t(Pt+1) = Pt + γ(Pt − ut), V2,t(Pt+1) = σ2
1 + b2vt, (2.7)

where γ, b2 ≥ 0 are constants, and ut and vt are the sample mean and variance, re-
spectively, which may follow some learning processes. The parameter γ measures the
extrapolation rate and high (low) values of γ correspond to strong (weak) extrapola-
tion from the trend followers. The coefficient b2 measures the influence of the sample
variance. Various learning schemes8 can be used to estimate the sample mean ut and
variance vt. Here we assume that

ut = δut−1 + (1− δ)Pt, vt = δvt−1 + δ(1− δ)(Pt − ut−1)
2, (2.8)

where δ ∈ [0, 1] is a constant. This is a limiting of a geometric decay process when the
length of memory lag tends to infinity9. The selection of this process is two fold. First,
traders tend to put a high weight on the most recent prices and less weight on the more
7The fundamental price process P ∗t is an approximation of continuous log-normal price process with
zero drift and volatility of σε.
8See for example Chiarella and He (2002, 2003a) and Chiarella, He and Wang (2006) for related studies.
9See Chiarella, He, Hung and Zhu (2006) for the proof. Basically, a geometric decay probability process
(1 − δ){1, δ, δ2, · · · } is associated with the historical prices {Pt, Pt−1, Pt−2, · · · }. The parameter δ
measures the geometric decay rate. For δ = 0, the sample mean ut = Pt, which is the latest observed
price, while δ = 0.1, 0.5, 0.95 and 0.999 gives a half life of 0.43 day, 1 day, 2.5 weeks and 2.7 years,
respectively.
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remote prices when they estimate the sample mean and variance. Secondly, we believe
that this geometric decay process may contribute to certain autocorrelation patterns, in
particular the power-law feature observed in real financial markets. In addition, it is
mathematically tractable.

To simplify the calculations, we assume that the dividend process Dt follows Dt ∼
N (D̄, σ2

D), the expected long-run fundamental value P̄ = D̄/(R − 1), and the un-
conditional variances of the price (σ2

1) and dividend (σ2
D) over the trading period are

related10 by σ2
D = qσ2

1 . Based on (2.6), E1,t(Rt+1) = α(P ∗
t+1 − Pt) − (R − 1)(Pt −

P̄ ), V1,t(Rt+1) = (1 + q)σ2
1 and hence the optimal demand of the fundamentalist is

given by

z1,t =
1

a1(1 + q)σ2
1

[α(P ∗
t+1 − Pt)− (R− 1)(Pt − P̄ )]. (2.9)

Similarly, from (2.7), E2,t(Rt+1) = Pt + γ(Pt − ut) + D̄ − R Pt = γ(Pt − ut) −
(R− 1)(Pt − P̄ ), V2,t(Rt+1) = σ2

1(1 + q + b vt), where b = b2/σ
2
1 . Hence the optimal

demand of the trend followers is given by

z2,t =
γ(Pt − ut)− (R− 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

. (2.10)

Subsisting (2.9) and (2.10) into (2.4), the market price under a market maker is deter-
mined by the following 4-dimensional stochastic difference system




Pt+1 = Pt +
µ

2

[
1 + m

a1(1 + q)σ2
1

[α(P ∗
t+1 − Pt)− (R− 1)(Pt − P̄ )]

+ (1−m)
γ(Pt − ut)− (R− 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

]
+ δ̃t,

ut = δut−1 + (1− δ)Pt,

vt = δvt−1 + δ(1− δ)(Pt − ut−1)
2,

P ∗
t+1 = P ∗

t exp(−σ2
ε

2
+ σεε̃t).

(2.11)

By applying the stability and bifurcation theory to the corresponding deterministic
model and using Monte Carlo simulation to the stochastic model, He and Li (2008)
conduct both analytical and statistical analysis for the model and find that the conver-
gence of the market prices to their fundamental value, and various under and over-
reaction autocorrelation patterns of returns can be characterized by the dynamics, in-
cluding the stability and bifurcations, of the underlying deterministic system. Based
on the characterizations, He and Li (2007) provide further evidence of the MF model
on generating power-law behavior in volatility, showing that agent heterogeneity, risk-
adjusted trend chasing through the geometric learning process, and the interplay of
10 Let σP̄ be the annual volatility of P ∗t and D̄t = rP ∗t be the annual dividend. In this paper, we
choose σ2

1 = σ2
P̄

/K and q = r2. In fact, the annual variance of the dividend σ̄2
D = r2σ2

P̄
. Therefore

σ2
D = σ̄2

D/K = r2σ2
P̄

/K = r2σ2
1 . For our calibration in this paper, we choose r = 5% p.a, P̄ = $100,

σP̄ = σP̄ , σε = σ and K = 250.
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noisy fundamental and demand processes and a stable deterministic equilibrium can
be the source of power-law distributed fluctuations. In particular, the two noisy pro-
cesses play different role; the noisy demand plays an important role in the generation
of insignificant autocorrelations (ACs) on returns, while the significant decaying AC
patterns of the absolute returns and squared returns are more influenced by the noisy
fundamental process. These findings provide a solid foundation for the calibration of
the model to financial date in terms of the power-law behavior in volatility. In the
following sections, we first calibrate the MF model to characterize the power-law be-
haviour of the DAX 30 and estimate the decay indices and (FI)GARCH parameters
for the calibrated model. We then used the calibrated parameters to explain the market
behaviour and provide further supporting evidence on the generating mechanism dis-
covered in He and Li (2007). In addition, we reveal the potential of the MF model to
characterize the power-law behavior of tail distribution of asset returns.

3. CALIBRATION OF THE POWER-LAW BEHAVIOR IN THE DAX 30

This section provides a calibration result of the MF model to characterize the power-
law behaviour of the DAX 30. We start with a brief discussion on the stylized facts of
the DAX 30, including both fat tail and power-law behaviour. We then discuss the cali-
bration procedure, which is designed in principle to match the autocorrelation patterns
in the returns, absolute and squared returns for the DAX 30, and present the calibra-
tion result. Based on the calibrated parameters for the MF model, we use Monte Carlo
simulations to examine the effectiveness of the calibration. This includes to generate
the autocorrelation patters, estimate the decay indices of the power-law behavior, and
compare them with those of the DAX 30. In addition, we also used the calibration
result to examine the power-law tail behaviour of the MF model comparing with the
DAX 30. We demonstrate that the calibrated MF model generates closely the charac-
terization of the power-law behaviour of the DAX 30 in the return autocorrelation and
tails.

3.1. Stylized Facts and Autocorrelations of Returns for the DAX 30. The price
index data for the DAX 30 comes from Datastream, which contains 8001 daily ob-
servations from 11 August, 1975 to 29 June, 2007. Use pt to denote the price in-
dex for the DAX 30 at time t (t = 0, ..., 8000) and log returns rt are defined as
rt = ln pt − ln pt−1 (t = 1, · · · , 8000). Table 3.1 gives the summary statistics of
rt for the DAX 30, which shows many stylized facts in financial markets. We can see
from Table 3.1 that the kurtosis for rt is much higher than that of a normal distribution
(which is 3). The kurtosis and studentized range statistics (which is the range divided
by the standard deviation) show the characteristic fat-tailed behavior compared with a
normal distribution. The Jarque-Bera normality test statistic is far beyond the critical
value, which suggests that rt is far from a normal distribution. Figures 3.1 (a) and (b)
give the plots of pt and rt. It shows that the market volatility is changing over time
and large absolute returns are more likely to be followed by large absolute returns than
small absolute returns. This suggests that a suitable model for the data should have
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a time varying volatility and volatility clustering structure as suggested by the ARCH
and FIGARCH models.

TABLE 3.1. Summary statistics of rt.

mean std. skewness kurtosis min max stud. range Jarque-Bera
0.00034 0.01244 -0.4765 10.436 -0.1371 0.0755 17.092 18735
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FIGURE 3.1. Time series on prices and log returns of the DAX 30 from
11 August, 1975 to 29 June, 2007.
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FIGURE 3.2. Autocorrelations of rt, r2
t and |rt| for the DAX 30.

Apart from those reported stylized facts shared among different market indices, a
well known stylized fact of stock returns is that the returns themselves contain little
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serial correlation, but the absolute return |rt| and the squared returns r2
t do have sig-

nificantly positive serial correlation over long lags. For example, Ding et al. (1993)
investigate autocorrelations (ACs) of returns (and their transformations) of the daily
S&P 500 index over the period 1928 to 1991 and find that the absolute returns and
the squared returns tend to have very slow decaying autocorrelations, and further, the
sample autocorrelations for the absolute returns are greater than those for the squared
returns at every lag up to at least 100 lags. This kind of AC feature indicates the long-
range dependence or the power-law behavior in volatility. The autocorrelations for the
DAX 30 are plotted in Figure 3.2, which clearly support the findings in Ding et al.
(1993).

3.2. Calibration Method and Result. To calibrate the power-law behaviour of the
DAX 30 to our MF model, in principle, we minimize the average distance between the
autocorrelations of the log returns (the squared log returns, the absolute log returns) of
the DAX 30 and the corresponding autocorrelations generated from the MF-models.
More precisely, denote Θ the parameter space of the MF model. Let θ ∈ Θ is the vector
of parameters in the MF model we want to calibrate, N be the number of independent
simulations of the MF model, β̂n

MF be the estimated autocorrelations of the n-th run of
the MF model, and β̂DAX be that of the DAX 30. In calibration, we solve

θ̂ ∈ arg minθ∈Θ‖
1

N

N∑
n=1

β̂n
MF − β̂DAX‖2,

for the standard Euclidian norm ‖ · ‖, using a generalized simplex algorithm. The
parameters in the MF model are chosen to lie in the following ranges: α ∈ [0, 1],
γ ∈ [0.05, 5.5], a1, a2 ∈ [0.001, 6.0], µ ∈ [0.1, 5], m ∈ [−1, 1], δ ∈ [0, 1], b ∈
[0.05, 8.5], σε ∈ [0.005, 0.05], σ =

√
Kσε and σδ ∈ [0.05, 8.5]. However P = 100

and q = r2 = 0.052 are kept fixed. In the calibration and the subsequent econometric
analysis, we ran 1,000 independent simulations over 8,000 time periods and discarded
the first 1,000 time periods to wash out the possible initial noise effect. For each run
of the model we obtain 8,000 observations to matche the sample size of the DAX
30. It is not possible to use autocorrelations at all lags, so we focus on a limited set
of autocorrelations. In particular, we focus on lag lengths of 1 to 50, 55, 60, 65, ...,
and up to 100 periods. This corresponds to 60 autocorrelations in total for return, the
absolute return and squared return, respectively. Essentially, the dimension of β̂n

MF

and β̂DAX is 180, with 60 autocorrelations estimated for each of the rt, r2
t and |rt|.

The calibration result to the parameters of the MF model is reported in Table 3.2.

TABLE 3.2. The calibrated parameters of the MF models

α γ a1 a2 µ m δ b σ σδ

0.858 8.464 6.024 0.383 0.946 -0.200 0.292 6.763 0.24 3.473
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FIGURE 3.3. (a) Autocorrelations of rt, r2
t and |rt| for the MF model.

(b) The ACs of the returns, the squared returns and the absolute returns
for the calibrated MF model and the DAX 30. The smooth lines refer
to the MF model while the confidence intervals are those for the DAX
30.

3.3. The Autocorrelation Patterns of the Calibrated MF Model. It is interesting
to see whether our calibrated model is able to replicate the power-law behaviour of
the DAX 30 described in Figure 3.2. Using the parameters in Table 3.2, we run 1,000



CALIBRATING THE POWER-LAW BEHAVIOUR IN THE DAX 30 15

independent simulations for the MF model. For each run, we estimate the autocorre-
lation coefficients for returns, squared returns and absolute returns. We then take the
average over the 1,000 runs and plot the ACs in Figure 3.3(a). From Figure 3.3(a), we
see that for the MF model, the ACs are insignificant for the returns, but significantly
positive over long lags for r2

t and |rt|. Further, the sample autocorrelations for the ab-
solute returns are greater than that for the squared returns at every lag up to at least 100
lags. Comparing with Figure 3.2 for the DAX 30, we see that the patterns of decay of
the autocorrelation functions of return, the squared return and the absolute return are
very similar. To see how well the calibrated model is able to match the autocorrela-
tions of rt, r2

t and |rt| for the DAX 30, in Figures 3.3(b), we plot the autocorrelation
coefficients of returns, the squared returns and the absolute returns for the MF model
together with the DAX 30 respectively. For comparison purpose, we use the Newey-
West corrected standard errors and plot the corresponding confidence intervals of the
ACs of the DAX 30. Figure 3.3(b) clearly indicates that all of the autocorrelations of
the MF model lies inside the confidence intervals of the DAX 30.

3.4. Estimates of Power-law Decay Index. Besides the visual inspection of autocor-
relations of rt, r2

t and |rt|, one can also construct models to estimate the decay rate of
the autocorrelations of rt, r2

t and |rt|. For instance, we can semiparametrically model
long memory in a covariance stationary series xt, t = 0, ±1, ..., by

s(ω) ≈ c1ω
−2d as ω → 0+, (3.1)

where 0 < c1 < ∞, s(ω) is the spectral density of xt, and ω is the frequency. Under
(3.1), s(ω) has a pole at ω = 0 for 0 < d < 1/2 (when there is a long memory
in xt). For d ≥ 1/2, the process is not covariance stationary. For d = 0, s(ω) is
positive and finite. For −1/2 < d < 0, we have short memory, negative dependence,
or antipersistence. The ACs can be described by ρk ≈ c2k

2d−1, where c2 is a constant
and µ ≡ 2d− 1 corresponds to the hyperbolic decay index.

Geweke and Poter-Hudak (1983), henceforth GPH, suggest a semiparametric esti-
mator of the fractional differencing parameter d based on a regression of the ordinates
of the log spectral density. Given spectral ordinates ωj = 2πj/T (j = 1, 2, ..., m),
GPH suggest to estimate d from

log I(ωj) = c− d log(4 sin2(ωj/2)) + vj, (3.2)

where vj is assumed to be i.i.d. with zero mean and variance π2/6. If the num-
ber of ordinates m is chosen such that m = g(T ) satisfying limT→∞ g(T ) = ∞,
limT→∞ g(T )/T = 0 and limT→∞(log(T )2)/g(T ) = 0, then the OLS estimator of d
based on (3.2) has the limiting distribution

√
m(d̂GPH − d)

d→ N (0,
π2

24
). (3.3)

Robinson (1995) provides a formal proof for −1/2 < d < 1/2, Velasco (1999) proves
the consistency of d̂GPH in the case 1/2 ≤ d < 1 and its asymptotic normality in the
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case 1/2 ≤ d < 3/4. It is clear from this result that the GPH estimator is inconsistent
with

√
T convergence and in fact converges at a slower rate.

Another most often used estimator of d is developed by Robinson and Henry (1999),
henceforth RH. They suggest a semiparametric Gaussian estimate of the memory pa-
rameter d, by considering

d̂RH = arg min
d

R(d), R(d) = log

{
1

m

m∑
j=1

ω2d
j I(ωj)

}
− 2

d

m

m∑
j=1

log ωj, (3.4)

in which m ∈ (0, [T/2]). They prove that, under some conditions (see Robinson and
Henry (1999)),

√
m(d̂RH − d)

d→ N (0,
1

4
) (3.5)

when m < [T/2] such that 1/m + m/T → 0 as T →∞.
A major issue in the application of the GPH and the RH estimators is the choice of

m, due to the fact that there is a limited knowledge available concerning this issue,
see Geweke (1998) for instance. Hence it is a wise precaution to report the estimated
results for a range of bandwidths. In our study, for both the GPH and the RH estimates
of d, we report the corresponding estimates for m = 50, 100, 150, 200 and 250, re-
spectively. For instance, for the DAX 300, Table A.1 in Appendix A reports the GPH
and the RH estimates of d for returns, the squared returns, and the absolute returns,
respectively. In each panel in Table A.1, the first row reports the results from the GPH
and the RH estimates with m = 50, the second row reports the results of the GPH
and the RH estimates with m = 100, and so on. Table A.2 in Appendix A is arranged
similarly.

For the DAX 30, we see from Table A.1 that all of the estimated d for the returns
are not significant at all conventional significance levels while those for the squared
returns, and the absolute returns are significant. Thus the DAX 30 displays a clear
evidence of power-law for the squared and the absolute returns where d is positive,
and the persistence in the absolute returns is much stronger than that in the squared re-
turns. These results coincide with the well-established findings in the empirical finance
literature.

For the calibrated MF model, the estimates of the decay rate d are reported in Table
A.2 in Appendix A, where the column ‘Sig%’ indicates the percentage of simulations
for which the corresponding estimates are significant at the 5% level over 1,000 in-
dependent simulations. We find that on average the estimates of d are insignificant
for returns, but significantly positive for the squared returns and the absolute returns.
This verifies that there is a clear evidence of power-law for the squared returns and the
absolute returns, and also the patterns of the estimates of d for the squared returns and
the absolute returns are comparable to those of the DAX 30 in Table A.1.

The above analysis has clearly demonstrated that our calibration is very effective
in matching the autocorrelation patterns of the DEX 30. In the following discussion,
we want to see if the calibration MF model can be used to characterize the volatility
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clustering and power-law tail behaviour, for which our calibration procedure is not
designed.

3.5. Volatility Clustering, Power-law and (FI)GARCH Estimates. Another strik-
ing feature of the return series in market indices is the volatility clustering. A number
of econometric models of changing conditional variance have been developed to test
and measure volatility clustering. The most widely used one is the one introduced
by Engle (1982) and its generalization, the GARCH model, introduced by Bollerslev
(1986). Following their specification, for instance, if we model the returns as an AR(1)
process, then a GARCH(p, q) model is defined by:

{
rt =a + brt−1 + εt, εt = σtzt,

σ2
t =α0 + α(L)ε2

t + β(L)σ2
t , zt ∼ N(0, 1),

(3.6)

where L is the lag operator, α(L) =
∑q

i=1 αiL
i and β(L) =

∑p
j=1 βiL

j . Defining
vt = ε2

t − σ2
t , the process can be rewritten as an ARMA(s, p) process

[1− α(L)− β(L)]ε2
t = α0 + [1− β(L)]vt (3.7)

with s = max{p, q}. Table 3.3 reports the estimates of the GARCH (1, 1) model for
the DAX 30, where the mean process follows an AR(1) structure. Based on the es-
timates, one can see that a small influence of the most recent innovation (small α1)
is accompanied by a strong persistence of the variance coefficient (large β1). It is
also interesting to observe that the sum of the coefficients α1 + β1 is close to one,
which indicates that the process is close to an integrated GARCH (IGARCH) process.
Such parameter estimates are rather common when considering returns from high fre-
quency daily financial data of both share and foreign exchange markets (see, Pagan
(1996)). The GARCH implies that shocks to the conditional variance decay exponen-
tially. However the IGARCH implies that the shocks to the conditional variance persist
indefinitely.

TABLE 3.3. GARCH (1, 1) Estimates for the DAX 30

a× 103 b α0 × 104 α1 β1

0.4827 0.0539 0.0218 0.1056 0.8831
(0.1136 ) (0.0127) (0.0073) (0.0232) (0.0216)
Note: The numbers in parentheses are standard errors.

In response to the finding that most of the financial time series are long memory
volatility process, Baillie et al. (1996) consider the Fractional Integrated GARCH
(FIGARCH) process, where a shock to the conditional variance dies out at a slow
hyperbolic rate. Later on, Chung (1999) suggests a slightly different parameterization
of the model:

φ(L)(1− L)d(ε2
t − σ2) = α0 + [1− β(L)]vt, (3.8)
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TABLE 3.4. FIGARCH (1, d, 1) Estimates for the DAX 30

a b α0 × 104 d φ1 β
-0.0019 0.0012 0.0699 0.3259 0.2286 0.7716

(0.0003 ) (0.0092) (0.0248) (0.0078) (0.0148) (0.0034)
Note: The numbers in parentheses are standard errors.

where φ(L) = 1 − ∑q
i=1 φiL

i, α0 = φ(L)(1 − L)dσ2, and σ2 is the unconditional
variance of the corresponding GARCH model. Table 3.4 reports the estimates of the
FIGARCH (1, d, 1) model for the DAX 30, where the mean process follows an AR(1)
model. The estimate for the fractional differencing parameter d̂ is statistically very
different from both zero and one. This is consistent with the well known findings that
the shocks to the conditional variance dies out at a slow hyperbolic rate.

TABLE 3.5. GARCH (1, 1) Estimates for the Calibrated MF Model

a× 103 b α0 × 104 α1 β
-0.0836 0.0241 0.3385 0.1009 0.9050
(0.6939) (0.0122) (0.1040) (0.0093) (0.0081)

1.0 53.2 85.9 99.9 100
Note: The numbers in parentheses are the standard errors, and the numbers
in the last row are the percentages that the test statistics are significant at 5%
level over 1000 independent simulations. This also holds for Table 3.6.

TABLE 3.6. FIGARCH (1, d, 1) Estimates for the Calibrated MF Model

a b α0 × 104 d φ1 β
-0.0381 0.0264 0.11162 0.4332 0.1922 0.7490
(0.1037) (0.0973) (0.2275) (0.0379) (0.0494) (0.0313)

74.4 66.3 4.3 89.2 89.2 95.2

For the same specifications of the GARCH and FIGARCH models, we report result-
ing estimates for the calibrated MF model in Tables 3.5 and 3.6, respectively. Again,
all these estimates are the average of the estimations for each independent run of the
calibrated model. The results from the GARCH model are astonishingly similar to that
from the DAX 30, that is, a small influence of the most recent innovation is accompa-
nied by strong persistence of the variance coefficient and the sum of the coefficients
α1 + β1 is close to one. For the estimates of the FIGARCH(1, d, 1), we see that the
estimate of d for the calibrated MF model is significantly different from zero and one.

3.6. Power-law Tail Behavior. Since the work of Mandelbrot (1963), power-law tail
behavior was found in a wide range of financial time series, it has become one of



CALIBRATING THE POWER-LAW BEHAVIOUR IN THE DAX 30 19

the salient features in financial markets. In general, if fnormal is the probability den-
sity function of a normal distribution with mean µ and variance σ2, then we have
log fnormal(x) ∼ − 1

2σ2 x
2 as x → ±∞. A random variable X is said to follow a power-

law or Pareto distribution with shape parameter α > 0 and scale parameter β > 0 if
Pr[X > x] = (x/β)−α, for x ≥ β. In this case, log fPareto(x) ∼ −(α + 1) log(x) as
x → +∞. Hence the difference of the tail behavior between the normal and Pareto
distribution is significant.

The estimations of tail index have been studied in great detail in the Extreme Value
Theory. More precisely, let X1, X2, ..., Xn be a sequence of observations from some
distribution function F , with its order statistics X1,n ≤ X2,n ≤ ... ≤ Xn,n. As an
analogue to the Central Limit Theorem, we know that, on average, if the maximum
Xn,n, suitably centered and scaled, converges to a non-degenerate random variable,
then there exist two sequences {an} (an > 0) and {bn} such that

lim
n→∞

Pr
(

Xn,n − bn

an

≤ x

)
= Gγ(x), (3.9)

where

Gγ(x) := exp(−(1 + γx)−1/γ)

for some γ ∈ R and x such that 1+γx > 0. Note that for γ = 0,−(1+γx)−1/γ = e−x.
If (3.9) holds, then we say that F is in the max-domain of attraction of Gγ and γ
is called the extreme value index. In Pareto distribution, the tail index γ := 1/α
measures the thickness of the tail distribution, the bigger the γ, the heavier the tail. The
estimation of γ has been thoroughly studied, see Beirlant et al. (2004) for a detailed
account. We outline three major estimators, the Hill estimator, the Pickands estimator,
and the moment estimator in Dekkers et al. (1989). The Hill index is defined by

Hk,n =
1

k

k∑
j=1

log Xn−j+1,n − log Xn−k,n.

This estimator is consistent for k → ∞, k/n → 0 as n → ∞, and under extra
conditions,

√
k(Hk,n − γ) is asymptotically normal with mean 0 and variance γ2. The

Pickands (1975) estimator is defined as

γ̂P,k =
1

log 2
log

(
Xn−dk/4e+1,n −Xn−dk/2e+1,n

Xn−dk/2e+1,n −Xn−k+1,n

)
.

The simplicity of the Pickands estimator is appealing but offset by large asymptotic
variance, equal to γ2(22γ+1 + 1){(2γ − 1) log 2}−2. Dekkers et al. (1989) introduce a
moment estimator, which is a direct extension of Hill index,

Mk,n = Hk,n + 1− 1

2

(
1− H2

k,n

H
(2)
k,n

)−1

,
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where

H
(2)
k,n =

1

k

k∑
j=1

(log Xn−j+1,n − log Xn−k,n)2.

They also prove the consistency and asymptotic normality.
The Hill index relies on the average distance between extreme observations and the

tail cutoff point to extrapolate the behavior of the tails into the broader part of distri-
bution. In practice, the behavior of the Hill index depends heavily on the choice of
cutoff point k. This choice involves a tradeoff between bias and variance, which is
well known in the non-parametric econometrics. If k is chosen conservatively with
few order statistics in the tail, then the tail estimate will be sensitive to outliers in the
distribution and have a high variance. On the other hand if the tail includes observa-
tions in the central part of the distribution, the variance is reduced but the estimate is
biased upward. In the top panel of Figurer 3.4, we plot the Hill index over a range of
tail sizes. We see that for the negative tail, the Hill index of the MF model fits in the
confidence intervals of the DAX 30; for the positive tail, it fits well when k is chosen
less than 500. The Pickands estimates, plotted in the middle panel of Figurer 3.4, show
a larger variability. It seems that on average the estimates from the MF model with the
calibrated parameters are not far away from those of the DAX 30. The moment esti-
mates, plotted in the bottom panel of Figurer 3.4 for the MF model are smaller than
those for the DAX 30 but still fit in the confidence intervals. To conclude, the MF
model exhibits power-law tail behavior which is very close to that of the DAX 30.

The overall analysis in this section shows that the calibration method is very effec-
tive. The calibrated MF model is able to characterize successfully not only the power-
law behaviour in autocorrelation, but also the volatility clustering and power-law tail
behaviour in the DAX 30 as well.

4. IMPLICATION AND EXPLANATION OF THE CALIBRATION RESULT

In this section, we use the calibrated parameters and the findings in He and Li (2007,
2008) to interpret the market behaviour and provide some implications and explana-
tions on the generating mechanism of the power-law behavior of the MF model.

Based on the calibrated parameters in Table 3.2, the MF model of the DAX 30
market has the following features. The parameter value of m = −0.2 indicates that
both the fundamentalists and trend followers are active in the market but the market
is dominated by the trend followers with a majority of 60%. The higher a1 and lower
a2 imply that the fundamentalists are more risk averse comparing to the trend follow-
ers. Among the 40% of the fundamentalists, a high value of α = 0.858 indicates that
their speed of price adjustment toward the fundamental value is high. A higher value
of γ = 8.464 indicates that the trend followers extrapolate the price trend, measured
by the difference between the current price and the geometric moving average of the
history prices, strongly. The geometric decay rate is measured by δ and a value of
δ = 0.292 gives a half life of 0.56 day, implying a very quick decaying weight. The
parameter b2 = bσ2

1 measures the influence of the sample variance vt, in addition to the
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FIGURE 3.4. The tail index plots (k, Hk,n), (k, γ̂P,k), and (k, Mk,n) of
the negative tails (a1), (b1), (c1) and the positive tails (a2), (b2), (c2) for
the MF model and the DAX 30, respectively. The smooth lines refer to
the MF model while the confidence intervals are those for the actual
data.

common belief on the price volatility σ2
1 , to the estimated price volatility for the trend

followers. The calibrated value of b = 6.763 implies that the trend followers are cau-
tious when estimating the price volatility, though they are less risk averse (measured
by the CARA coefficient a2). The calibrated annual return volatility of σ = 24% is
closer to the annual return volatility of

√
250 × 0.01244 = 19.67% for the DAX 30.

A value of µ = 0.946 indicates that the speed of the market price adjustment from the
market maker is lower. The market price noise is about 3% of the average market price
level. Intuitively, we have a very interesting market. The market is dominated by the
trend followers. This dominance make the market less stable. However the market is
balanced somehow by the activities of other market participants. More precisely, the
trend followers destabilize the market in general. They are less risk averse, extrapolate
the price trend strongly. However, they are bounded rational in a sense that they are
cautious about their estimating price volatility when they extrapolate and follow the
price trend. The fundamentalists stabilize the market price to the fundamental value
in general. They are more risk averse and adjust the market price to the fundamental
value quickly. A low speed of price adjustment from the market maker can reduce the
market impact of the trend followers when the market becomes unstable. Therefore,
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due to the trend following activity, the trend followers make the market price to de-
viate from the fundamental value, but their cautiousness to the high volatility due to
they own extrapolation, together with the activity of the fundamentalists, makes the
market price move back to the fundamental value. However, due to the strong activity
of the fundamentalists, the market price can move back to the fundamental price very
quickly, this trend in turn is extrapolated by the trend followers, pushing the market
price to the other side of the fundamental value. This price process repeats again and
again.
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FIGURE 4.1. Price (P0, P ) and fundamental price (FP0, FP ) for the
underlying deterministic model (upper left) and the stochastic model
(upper right); the return (R) series (bottom left) and distribution (bot-
tom right) of the calibrated MF model.

The above intuitive explanation based on the calibrated result of the MF model can
be verified by the dynamics of the underlying deterministic model, which has been
examined extensively in He and Li (2008). In fact, for the corresponding deterministic
model with the calibrated parameters, the constant fundamental equilibrium becomes
unstable through a Hopf bifurcation, leading to (a)periodical oscillation of the market
price around the fundamental equilibrium. This is illustrated by the upper left panel
in Figure 4.1. Such periodical deviations of the market prices from the fundamental
value in the deterministic model are inherited by the stochastic model. The upper right
panel in Figure 4.1 plots both the market price and fundamental price of the stochastic
model. It shows that the market prices deviate from the fundamental prices from time
to time, but follow the fundamental prices in general. In addition, the returns of the
stochastic model display the stylized facts of volatility clustering (the bottom left in
Figure 4.1) and non-normality in distribution (the bottom right in Figure 4.1).
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One of the important contributions of this paper is that the calibration result pro-
vides a strong support on the power-law behaviour mechanism examined in He and
Li (2007). In He and Li (2007), the MF model is used to examine potential source
of agent-based model with heterogeneous belief in generating power-law behaviour in
return autocorrelation patterns. By examining the dynamics of the underlying deter-
ministic model and simulating the impact of two different forms of noisy processes on
the deterministic dynamics, He and Li (2007) find that the interaction of fundamental-
ists and risk-adjusted trend chasing from the trend followers and the interplay of noisy
fundamental and demand processes and the underlying deterministic dynamics can be
the source of power-law behaviour. In particular, it demonstrates that, for the MF
model with a chosen set of parameters near the Hopf bifurcation value of underlying
deterministic model, adding noisy demand plays an important role in the generation
of insignificant autocorrelations (ACs) on the returns, while the significant decaying
AC patterns of the absolute returns and squared returns are more influenced by the
noisy fundamental process. This potential source of power-law generating mechanism
obtained in He and Li (2007) through experiment is verified from the calibration we
conduct in this paper. In particular, the calibrated parameters correspond to Hopf-
bifurcation induced (a)periodic oscillation of the deterministic dynamics. The same
mechanism is also used in Chiarella, He and Hommes (2006). Intuitively, the cal-
ibration conducted in this paper should fit the data better than than the experiment
conducted in He and Li (2007) and this intuition is confirmed by the following discus-
sion.

To see how well the MF model is able to describe these characteristics in the DAX
30, we construct confidence intervals for the estimates based upon the DAX 30 to see
if the estimates based upon the calibrated MF model lie in these intervals or not. In
the following, we focus on the average estimates of the MF model rather than their
accuracy since, by running the MF model independently many times, the estimates
converge much faster than those of the DAX 30. Apart from checking the confidence
intervals, we also construct Wald test for this purpose. For instance, for the decay index
d of the returns, the squared returns or the absolute returns, we want to test whether
the values of the parameter d estimated from both the DAX 30 and the MF model are
the same. In other words, we want to test hypothesis

H0 : dDAX = dMF .

Using the Wald test, this null hypothesis can be tested by assuming that both the num-
ber of simulations and the number of time periods for each simulation go to infinity.
In the construction of the Wald test, the test statistic is given by

W = (d̂DAX − d̂MF )Σ̂−1(d̂DAX − d̂MF ),

where Σ̂ is simply the variance of d̂DAX . The resulting test statistics are summarized in
Table 4.1. In the column ‘rt’, the first sub-row reports the test statistics corresponding
to d̂GPH , and the second sub-row corresponding to d̂RH , and so on. Notice that the
critical values of the Wald test at 5% and 1% significant levels are 3.842 and 6.635,
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respectively. For the returns, we see that the estimated d of the DAX 30 and the MF
model are significantly different. However, for the squared returns and the absolute
returns, the differences between the estimated d of the DAX 30 and the MF model are
not statistically significant. The same Wald test is also conducted for the simulation
experiment in He and Li (2007) and the test statistics indicate that the estimated decay
parameters from the calibration is much closer to the estimates from the DAX 30,
comparing to the the simulation experiment in He and Li (2007). For a more general
discussion on a comparison of the simulation models with the real world data, see Li
et al. (2006a, 2006b).

TABLE 4.1. The Wald test of d with m = 50, 100, 150, 200, 250

m 50 100 150 200 250

rt
18.58 45.71 64.69 71.22 84.57
40.80 93.16 132.1 128.6 146.3

r2
t

0.044 1.263 0.303 0.015 0.055
0.055 1.245 0.028 0.590 0.167

|rt| 0.078 1.097 1.668 0.484 0.266
0.038 0.335 0.075 0.047 0.029

The above analysis indicates that the calibration of the simple market fraction model
is able to replicate most stylized facts and power-law behaviour in the DAX 30, though
formal statistical tests find that not all of the estimates from the calibrated MF model
could easily completely match those of the DAX 30 simultaneously (this is probably
due to the simplicity of the MF model). It is this simplicity that makes it possible to
identify potential sources and mechanisms and to calibrate those characteristics in the
DAX 30.

5. CONCLUSION

To characterize stylized facts and power-law behaviour in financial market, we have
evidenced a growing literature in HAMs to incorporate agents’ heterogeneity and
bounded rationality. The theoretical oriented HAMs have provided many insights into
many market behaviour such as market booming and crashing, existence of multiple
market equilibrium, the short-run deviation of the market price from the fundamental
price and long-run convergence of the market price to the fundamental price. Com-
bined with numerical simulations, the HAMs have been proved to be able to reproduce
some stylized fact, such as non-normality in return and volatility clustering. More
recently development in the HAMs has stimulated many interests in the generation
mechanism of those stylized facts and in particular, the power-law behaviour. How-
ever, estimation and calibration of the HAMs to the power-law behaviour of financial
data is a difficult and challenge task. This is due to the wilderness of the HAMs that
have too many parameters to be estimated, leading to less clear understanding of mech-
anisms that generate the stylized facts. This is also due to our limited understanding
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of the interplay between the deterministic dynamics and exogenous noise processes.
In addition, most of the HAMs deal with the dynamics at price level, while most of
the stylized facts, in particular the power-law behaviour, are at the return level. This
mismatching between theoretical models and empirical facts makes it difficult to un-
derstand the generating mechanism of the stylized facts of the HAMs in general.

To understand these issues and to overcome the difficult, He and Li (2008) develop
a simple and parsimonious stochastic market fraction (MF) asset pricing model of
two types of traders (fundamentalists and trend followers) under a market maker sce-
nario. They seek to explain aspects of financial market behavior, such as market domi-
nance, convergence of the market price to the fundamental price, and under- and over-
reaction, and to characterize various statistical properties, including the convergence of
the limiting distribution and autocorrelation structure, of the stochastic model by using
the dynamics of the underlying deterministic system, traders’ heterogeneous behavior
and market fractions. A statistical analysis based on Monte Carlo simulations shows
that the long-run behavior, convergence of the market prices to the fundamental price,
limiting distributions, and various under and over-reaction autocorrelation patterns of
returns can be characterized by the stability and bifurcations of the underlying deter-
ministic system. The analysis underpins the mechanisms on various market behaviors
(such as under/over-reactions), market dominance and stylized facts in high frequency
financial markets. Based on these results, He and Li (2007) use the MF model to show
that agent heterogeneity, risk-adjusted trend chasing through the geometric learning
process, and the interplay of noisy fundamental and demand processes and the under-
lying deterministic dynamics can be the source of power-law distributed fluctuations.
Those analysis of the simple and parsimonious MF model provides a foundation for
our calibration in this paper.

Motivated by the mechanism investigation on the power-law properties of the sim-
ple and parsimonious MF model, this paper calibrates the model to the power-law
behaviour in the DAX 30. The calibration method is based on minimization of the av-
erage distance between the autocorrelations (ACs) of the returns, the squared returns
and the absoluted returns of the DAX 30 and the corresponding ACs generated from
the MF model. With the parameter values of the calibrated model, we show that the
ACs of the market fraction model share the same ACs pattern for the DAX 30. To
characterize the power-law behaviors statistically, we conduct econometric analysis
via Monte Carlo simulations and estimate the decay indices, the (FI)GARCH parame-
ters, Hill index and related tests. We find that the calibrated MF model matches closely
to the corresponding estimates for the DAX 30. We also demonstrate that the calibra-
tion parameters are consistent with the economic intuition of the model and supports
the generating mechanism of the power-law behaviour of the MF model found in He
and Li (2007). As a by-products, the calibrated model also generates non-normality re-
turn distribution, volatility clustering, and fat tails. Therefore the calibrated MF model
can fit the most of the stylized facts observed in the DAX 30. Our results thus provide
a strongly support on the explanation power of the HAMs.
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It is worth emphasizing that all these interesting qualitative and quantitative features
arise from the simple model with fixed market fractions. It may be interesting to
extend our analysis and calibration to the model established recently by Dieci et al.
(2006), in which part of the market fractions are governed by market mood and the
rest follow some adaptive switching process. One way to start might be to estimate the
model first, and then implement misspecification tests. Econometric methods, such as
efficient methods of moments could be used. Allowing for market mood and switching
mechanisms and using these econometric estimation approaches, we may gain a better
characterization and understanding of the mechanisms driving financial markets and
calibrate the model to better fit the financial data.
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APPENDIX A. ESTIMATION RESULTS

TABLE A.1. The estimates of d for the DAX 30 with m = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI d̂RH t p-value 95% CI
rt 0.0014 0.014 0.989 [-0.2005, 0.2034] -0.0179 -0.253 0.801 [-0.1565, 0.1207]

0.0407 0.587 0.557 [-0.0954, 0.1769] 0.0615 1.229 0.219 [-0.0365, 0.1595]
0.0548 0.985 0.325 [-0.0542, 0.1638] 0.0829 2.031 0.042 [0.0029, 0.1629]
0.0406 0.852 0.394 [-0.0528, 0.1340] 0.0482 1.362 0.173 [-0.0211, 0.1175]
0.0543 1.283 0.199 [-0.0286, 0.1372] 0.0571 1.807 0.071 [-0.0048, 0.1191]

r2
t 0.4111 3.990 0.000 [0.2091, 0.6130] 0.3785 5.353 0.000 [0.2399, 0.5171]

0.4527 6.518 0.000 [0.3165, 0.5888] 0.4365 8.731 0.000 [0.3385, 0.5345]
0.4053 7.288 0.000 [0.2963, 0.5143] 0.3735 9.149 0.000 [0.2935, 0.4535]
0.3666 7.696 0.000 [0.2733, 0.4600] 0.3508 9.923 0.000 [0.2816, 0.4201]
0.3785 8.946 0.000 [0.2956, 0.4614] 0.3605 11.40 0.000 [0.2985, 0.4225]

|rt| 0.5242 5.087 0.000 [0.3222, 0.7261] 0.4801 6.790 0.000 [0.3415, 0.6187]
0.5495 7.911 0.000 [0.4133, 0.6856] 0.5167 10.33 0.000 [0.4187, 0.6147]
0.5442 9.785 0.000 [0.4352, 0.6532] 0.4914 12.04 0.000 [0.4114, 0.5714]
0.4993 10.48 0.000 [0.4059, 0.5927] 0.4818 13.63 0.000 [0.4125, 0.5511]
0.4797 11.34 0.000 [0.3968, 0.5626] 0.4708 14.89 0.000 [0.4088, 0.5327]

TABLE A.2. The estimates of d for the MF model with m = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI Sig% d̂RH t p-value 95% CI Sig%
rt -0.4426 -4.296 0.058 [-0.4490, -0.4362] 84.2 -0.4337 -6.134 0.039 [-0.4381, -0.4294] 91.0

-0.4292 -6.179 0.034 [-0.4335, -0.4249] 91.9 -0.4211 -8.421 0.025 [-0.4242, -0.4180] 94.5
-0.3924 -7.055 0.028 [-0.3958, -0.3889] 92.9 -0.3860 -9.454 0.019 [-0.3885, -0.3834] 95.4
-0.3611 -7.580 0.023 [-0.3641, -0.3582] 94.2 -0.3533 -9.992 0.014 [-0.3555, -0.3511] 96.2
-0.3347 -7.910 0.022 [-0.3373, -0.3320] 94.2 -0.3251 -10.28 0.015 [-0.3271, -0.3232] 96.0

r2
t 0.3896 3.781 0.020 [0.3832, 0.3960] 91.4 0.3950 5.587 0.002 [0.3906, 0.3994] 99.1

0.3746 5.394 0.001 [0.3703, 0.3789] 99.3 0.3807 7.615 0.000 [0.3776, 0.3838] 100
0.3747 6.738 0.000 [0.3713, 0.3782] 100 0.3803 9.315 0.000 [0.3778, 0.3828] 100
0.3725 7.819 0.000 [0.3695, 0.3754] 100 0.3780 10.69 0.000 [0.3758, 0.3802] 100
0.3686 8.711 0.000 [0.3659, 0.3712] 100 0.3734 11.81 0.000 [0.3715, 0.3754] 100

|rt| 0.4954 4.808 0.002 [0.4890, 0.5018] 98.7 0.4938 6.983 0.000 [0.4894, 0.4981] 99.8
0.4767 6.863 0.000 [0.4724, 0.4810] 100 0.4758 9.516 0.000 [0.4727, 0.4789] 100
0.4724 8.494 0.000 [0.4690, 0.4759] 100 0.4720 11.56 0.000 [0.4695, 0.4746] 100
0.4662 9.787 0.000 [0.4633, 0.4692] 100 0.4665 13.19 0.000 [0.4643, 0.4687] 100
0.4579 10.82 0.000 [0.4553, 0.4606] 100 0.4587 14.51 0.000 [0.4567, 0.4606] 100
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