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Abstract. We describe the distribution of the model of a limit order market by Smith
et al. [2003]. We analytically prove that the tails of the price increments are fat with the
tail exponent one if the initial order books are empty and that they are thin if the limit
orders are collected for some (arbitrarily short) time and an initial call auction is held
before the start of the trading. Hence, our results point out to the stabilizing role of the
initial call auction.
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1. Introduction

In our paper, we deal with the recent zero intelligence model of a limit order market
by Smith et al. [2003]. In Šmı́d [2008], the distribution of a general model whose
special case the Smith and Farmer’s model is, is rigorously described; however, since
the general model is quite abstract, the application of its formulas to particular
models is not straightforward and deserves some mathematical work.

In the present paper, we do this job for the Smith & Farmer’s model: we recur-
sively describe the distribution of the S. & F.’s model.

Further, we pay an attention to the tails of the price increments in the model
- we prove them to be fat given the empty initial order books but thin given that
an initial order book is infinite and dense enough which happens if the orders are
collected for some time instead of the continuous time trading and a subsequent call
auction is held.

2. The S.& F. Model

By their model, S.& F. describe a limit order market1 with discrete equidistant
(log)prices and unit order sizes. The sell and buy market orders arrive with the

∗This work is supported by the grants no. 402/06/1417 and 402/07/1113 of the Czech Science
Foundation.

1For a description of the functioning of limit order markets see Smith et al. [2003] or Šmı́d
[2008]
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same fixed rate η > 0, the buy/sell limit orders with a specified price (less/greater
than the best quote of the opposite type) arrive with the common fixed rate ς > 0
per tick and the rate of cancelation of each waiting limit is equal to a fixed value
ι > 0. For details, see Smith et al. [2003].

3. The Distribution

For each p ∈ Z and t ≥ 0, denote At(p) and Bt(p) the number of sell limit orders,
buy limit orders respectively, with the limit price p ∈ Z waiting at t ≥ 0. As
demonstrated by Šmı́d [2008] (see Example 3 therein), the random element

Ξt = (At(•), Bt(•)), t ≥ 0,

is a (infinitely dimensional) Markov Process.
Denote

at = min{p : At(p) > 0}, bt = max{p : Bt(p) > 0}

the best ask, bid respectively, and

ξt = (at, At(at), bt, Bt(bt))

the process of the best quotes and volumes offered at the best quotes. Demote
0 = τ0 < τ1 < τ2 < . . . the jump times of ξ.

Along with Šmı́d [2008], we describe the conditional distribution of ΞT given Ξ0

and the history of ξ up to T , denoted by ξ̄T , first.

Proposition 1. Let T be deterministic or equal to the time of the i-th jump of ξ for
some i. Then

AT (p)|ξ̄T , Ξ0 ∼ Poisson
(ς

ι
(1− e−ι(T−θp))

)
◦ Binomial

(
σp, e

−ι(T−θp)
)

where θp = 0 ∨max{t ≤ T : at ≥ p}, and σp = Aθ−p
(p), a symmetric formula holds

for
BT (p)|ξ̄T , Ξ0

and
. . . , AT (−1), BT (−1), AT (0), BT (0), AT (1), . . .

are conditionally independent given (ξ̄T , Ξ0).

Proof. The assertion is an immediate consequence of Šmı́d [2008], Proposition 2

Before going on, let us introduce the variables ζ1, ζ2, . . . ,

ζi ∈ {a, b, a?, b?, a×, b×}, i ∈ N,

coding the type of the event happening at the time τi. Here, a and b mean an
arrival of a buy limit order, sell limit order respectively, with limit price π such
that bti−1

≤ π ≤ ati−1
, further, a? and b? stands for a sell, buy respectively, market

order arrival and, finally, a× and b× denote the cancelation of the best ask, bid
respectively.
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Proposition 2. Denote st = at − bt + 1. Then

(i) ∆τi|ξ̄τi−1
, Ξ0 ∼ Exp (µ) where µ = 2(η + ι + ςsτi−1

)

(ii)

P(χi = c|∆τi, ξ̄τi−1
, Ξ0) = µ−1 ×


η if c = a? or c = b?

ι if c = a× or c = b×

ςsτi−1
if c = a or c = b

(iii) The conditional distribution of aτi
|χi, ∆τi, ξ̄τi−1

, Ξ0 is

• Dirac, concentrated in aτi−1
if χi ∈ {a?, b×, b}

• uniform on {bτi−1
, bτi−1+1, aτi−1

} if χi = a

• such that, for any any σ(ξ̄τi−1
, Ξ0)-measurable variable p, it holds that

P(aT > p|χi, ∆τi, ξ̄τi−1
, Ξ0) = qp

qp =

p∏
p=aτi

[1− e−ι(τi−θ′p)]σ
′
p exp

{
−ς

ι

(
1− e−ι(τi−θ′p)

)}
,

θ′p = 0 ∨max{t < τi : at ≥ p}, σ′p = A(θ′p)−(p)

if χi ∈ {b?, a×}

Proof. The assertion may be proved analogously to Proposition 3 of Šmı́d [2008].

4. Initial Call Auction

Suppose now that, before the beginning of the trading (e.g. over the night), the
orders arrive to the market but no trading is done and the orders accumulate and,
at the end of the accumulation period (time zero), the call auction is held (i.e. all
the trades are made for a price maximizing the traded volume). The (limit) order
flow is assumed to be the same as in the continuous model S. & F., i.e. with unit
intensity ς and starting from a (fixed) minimal possible sell limit price a?, maximal
buy limit price b? respectively. For simplicity, we assume that no market orders come
and no cancelations take place during the accumulation period (our results would
be preserved up to constants after the inclusion of market orders and cancelations).

Under our assumptions, best ask a the time zero is

a0 = min

{
p ∈ Z :

p∑
π=a?

S(π) >
b?∑

π=p

D(π)

}

where D(p) (S(p)) are the numbers of buy (sell) limit orders with limit price p
having arrived until the time zero (analogous formula holds for b0)

Given our assumptions

D(b?), S(a?), D(b? − 1), S(a? + 1), . . .
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are clearly i.i.d. Poisson with intensity λ = ςθ where θ ≥ 0 is the length of the
accumulation period. Even if the joint distribution of (B0, A0) could be quite easily
determined, we will be interested only in the distribution of (A0(a0 + 1), A0(a0 +
2), . . . ) in the sequel: It may be easily shown that

A0(a0 + 1), A0(a0 + 2), . . .

is a sequence of i.i.d. Poisson variables with intensity λ. Quite naturally, we shall
assume the order flow at the initial period to be independent of the flow of the orders
starting from time zero.

In case that θ = 0, i.e. there is no initial auction, we shall assume the initial order
books to consist each of a single (deterministic startup) order, naturally denoted by
a0, b0 respectively.

4.1. Tails of the i-th jump

In the present subsection, we shall deal with the right tail of a at the time of the
i-th jump of ξ.

First, let us note that each jump up of a has to happen at one of the times

t1, t2, . . .

where, for each i ∈ N, ti is either an arrival of a buy market order or a cancelation
of a single (sell) order with limit price at−i

- the order whose cancelation “causes”

ti is chosen according to some rule at the time of the previous jump of a (it will be
suitable for us to chose the one with the highest limit price in the underlying model,
see Sec. 3 of Šmı́d [2008]) - clearly, ∆t1, ∆t2, . . . are i.i.d. exponential with intensity
η + ι. Note also that each ti, i ∈ N, causes a jump of ξ.

It follows from the definition of the dynamics of Ξ that

ati ≤ di, i ∈ N, (1)

where d0 = a0 and, for each i ∈ N,

di = min{p ∈ Z, p > āi : At−i
(p) > 0}, āi = max{a0, at1 , . . . , ati−1

}.

Let i ∈ N. Denote Θi = (a0, t1, at1 , . . . , ti−1, ati−1
, ti). It follows from Šmı́d [2008],

Proposition 6, that

At−i
(āi + p)|Θi ∼ Poisson

(ς

ι
+ e−ιti

[
λ− ς

ι

])
, p > 0,

and that
At−i

(āi + 1), At−i
(āi + 2), . . .

are conditionally independent given Θi for each i ∈ N. Therefore,

P(∆di > p|Θi) = exp
{
−
(ς

ι
+ e−ιti

[
λ− ς

ι

])
p
}

. p ∈ N0.
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Since P(∆di ∈ •|Θi) does not depend on a0, at1 , . . . , ati−1
it coincides with P(∆di ∈

•|t1, . . . , ti). Using it,

P(∆di > p) =

∫ ∞

0

. . .

∫ ∞

0

P(∆di > p|s1, . . . , si)dPt1(s1) . . . dPti(si)

=

∞∫
0

. . .

∞∫
0

exp
{
−
(ς

ι
+ e−ι

∑i
j=1 sj

[
λ− ς

ι

])
p
} i∏

j=1

[
(ι + η)e−(ι+η)sj

]
ds1 . . . dsi

sj=−
ln ui

ι=
(
1 +

η

ι

)i

exp
{
−ς

ι
p
} 1∫

0

. . .

1∫
0

exp

{[ς
ι
− λ
]
p

i∏
j=1

uj

}
i∏

j=1

u
ς/ι
j du1 . . . dui

=
(
1 +

η

ι

)i

exp
{
−ς

ι
p
} ∞∑

ν=0

([
ς
ι
− λ
]
p
)ν

(ν + 1 + ς/ι)iν!

(we got the last “=” by integrating the Taylor expansion of the integrand at the
previous term). Since, for any 1 ≤ k ≤ i,

lk ≤
ν + k

ν + 1 + ς/ι
≤ hk, lk = 1 ∧ k

1− ς/ι
hk = 1 ∨ k

1− ς/ι
, 2

we have that

∞∑
ν=0

([
ς
ι
− λ
]
p
)ν

(ν + 1 + ς/ι)iν!

{
≥ Li

≤ Hi

}
·
∞∑

ν=0

([
ς
ι
− λ
]
p
)ν

(ν + i)!

=

{
Li

Hi

}
· 1[

ς
ι
− λ
]i

pi

(
exp

{[ς
ι
− λ
]
p
}
−

i−1∑
k=0

1

k!
[

ς
ι
− λ
]k

pk

)
where

Li = [min{l1, l2, . . . , li}]i, Hi = [max{h1, h2, . . . , hi}]i

(we have used the formula for the Taylor expansion of the exponential at the last
“=”) i.e.

P(∆di > p)

{
≥ Li

≤ Hi

}
·

(
exp{−λp} ci

pi
− exp

{
−ς

ι
p
} i−1∑

k=0

ck

pk

)
,

for some positive c0, . . . , ci, immediately implying

0 < lim
p→∞

P(∆di > p)

exp {λp} pi
< ∞.

Further, using (1) and the fact that

P(di > p) ≤ P(∆d1 > p/i or ∆d2 > p/i or . . . or ∆di > p/i ) ≤
i∑

j=1

P(∆dj > p),

2Indeed, if 1− ς/ι ≤ k then 1 ≤ ν+k
ν+1+ς/ι = 1 + k−(1+ς/ι)

ν+1+ς/ι ≤ 1 + k−(1+ς/ι)
k = k

1+ς/ι , similarly for
1− ς/ι > k.
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we are getting

lim
p→∞

P(ati − a0 > p)

exp
{

λ
i
p
}

p
< ∞

i.e. the tail exponent of ati is ∞ if λ > 0 or at least one if λ = 0.
We show that the exponent is exactly one if λ = 0: Let p > 0 be a constant

divisible by 2i. Denote ϑ the minimum of

• the time of the first sell market order arrival

• the time of the cancelation of the initial sell order

• the time of the arrival of the first sell limit order with limit price b0 < π ≤ a0.

It is clear that ϑ1 > t1 implies a1 = d1. Further, consider the random event

E = [ϑ > ti, ∆d1 > 2p, ∆τ ′2 + · · ·+ ∆τ ′i < ∆t2, σ > ∆t2] ∧ E2 ∧ · · · ∧ Ei

Eν = [πν ∈ (2−(ν−1)p, 2−νp], ζν = b], 2 ≤ ν ≤ i,

where

τ ′1 = t1,

τ ′ν is the time of the arrival of the first (buy or sell) limit order with relative limit
price belonging to {1, 2, . . . , 2p}

πν is the relative limit price of the order having arrived at τ ′ν

ζν is b iff the order having arrived at τ ′ν is the buy one

σ is the lifetime of the order having arrived at τ ′2.

It may be shown that ai − a0 > p given E. Using this, we are getting

P(ai − a0 > p) ≥ P(E) ≥ P (F1 ∧ F2)

F1 = [t1 < T, ∆d1 > 2p],

F2 = [ϑ > T + ∆t2 + · · ·+ ∆ti, ∆τ ′2 + · · ·+ ∆τ ′i < ∆t2, σ > ∆t2] ∧ E2 ∧ · · · ∧ Ei

where T is arbitrarily chosen constant. Since, for any deterministic T ,

P(∆d1 > p, t1 ≤ T ) =
(κ

ι
exp

{ς

ι
p
})∫ 1

e−ιt

exp
{ς

ι
pu
}

uς/ιdu

=
(κ

ι
exp

{ς

ι
p
}) ∞∑

ν=0

(
ς
ι
p
)ν

(ν + 1 + ς/ι)ν!
(1− exp{−(ιν + ι + ς)T})

=
(κ

ι
exp

{ς

ι
p
}) ∞∑

ν=0

(
ς
ι
p
)ν − exp{−(ι + ς)T}

(
exp{−ιT} ς

ι
p
)ν

(ν + 1 + ς/ι)ν!

≥ L
1

p
exp

{ς

ι
p
}
−H

1

p
exp

{
exp{−ιT}ς

ι
p
}

(2)
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for some constants H, L we have

P(F1) ≥
C1

p
− C2

exp{ξp}p
(3)

for some positive constants C1, C2, ξ. Since, in addition, F1⊥⊥F2 and since P(F2)
does not depend on p, we are finally getting that

0 < lim
p→∞

P(ai − a0 > p)

p
. i ∈ N.

i.e. the tail index of ati is indeed one.
Finally, since the sequence τ1, τ2, . . . comprises all the times t1, t2, . . . , it may be

easily shown that the properties of the exponents of ati apply also to aτi
for any i.

5. Tails at a Fixed Horizon

To confirm our findings in “changed condition” let us examine, in addition to the
“tick time”, the price increment at a fixed horizo T > 0

Assume λ > 0 first; in this case,

P(∆di > p|Θi, ti, ti+1, . . . ) ≤ exp{−γp}, γ = λ ∧ ς

ι

(we have used the fact that At−i
⊥⊥ti+1, ti+2, . . . ) hence

P(di − a0 > p|t1, t2, . . . ) ≤
∫ ∞

p

εi(p)dp

where

εi(p) =
γipi−1e−γp

(i− 1)!

is the p.d.f. of the Erlang distribution with parameters i and γ.
Because I = max{i : ti ≤ T} is Poisson with η + ι and since I is σ(t1, t2, . . . )-

measurable, we have, for any p > 1,

P(dI − a0 > p) =
∞∑
i=1

P(di − a0 > p|I = i)P(I = i)

=
∞∑
i=1

P(di − a0 > p|t1, t2, . . . )P(I = i) ≤
∫ ∞

p

e−η−ι−γz

∞∑
i=1

(η + ι)iγizi−1

i!(i− 1)!
dz

≤
∫ ∞

p

e−η−ι−γz

2dη+ιe∑
i=1

ciz
i + C

∞∑
i=0

(γ/2)izi

i!

 dz

≤
2dη+ιe∑

i=1

∫ ∞

p

e−η−ι−γzciz
idz + C

∫ ∞

p

e−η−ι−(γ/2)zdz

for some positive C, c1, . . . , c2dη+ιe - since all the summands on the r.h.s. vanish at
the exponential rate, the tails of aT − a0 are thin.
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Finally, let us prove that the tail index of aT is at most one if λ = 0: since
aT − a0 > p if ∆d1 > 2p, t1 ≤ T , t2 ≥ T , ϑ ≥ T and τ ′2 ≥ T we get, similarly to the
previous subsection, that

P(aT > p) ≥
(

C1

p
− C2 exp{−ξp}

p

)
β

for some β > 0 (see (2)) i.e.

limp→∞ P(aT > p)

p
≥ 0

proving that the tail exponent of aT is at most one.

6. Conclusion

We have described the distribution of the model by Smith et al. [2003] and we
studied the tail behavior of its price increments. We found the tail exponent to be
one if the initial order book is empty but infinity if an initial call auction is held at
the start of the trading.

Concluding the paper, let us stress that we are not in any contradiction with
papers finding greater tail exponents at similar models (e.g. Slanina [2001]) because,
contrary to them, we do not study tails of the stationary distributions; since, by our
computations, the weights of tails of order one decrease with the increasing time, our
results in fact support the hypothesis that the tails of stationary price increments
are lighter than one. In this light, our “fat-tailed” result does not seem to be
any revolutionary one. What appears quite surprising, on the other hand, is the
demonstrated stabilizing role of the initial call auction.
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