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Extended Abstract

Financial market volatility is essential the driving force of financial markets. The

understanding and management of the volatility are the focus of finance literature, in

particular, the mechanism of market volatility. From the early representative agent and

rational expectation theory to the current heterogeneous beliefs and bounded rationality

framework, we have witnessed an extensive development along the line and we refer to

some of the recent survey papers by Hommes (2006), LeBaron (2006) and Chen (2007).

Most of the heterogeneous agent models (HAMs) have been developed successfully

to explain some complex phenomena in financial markets, such as market booming and

crashing, and the stylized facts, such as fat tail, long memory, volatility clustering and

excess volatility. The beliefs can be either linear or nonlinear but symmetrical about price

change. Implicitly this assumes that investors behave in the same way when market is

either booming or crashing. However, this assumption is not realistic. Very often,

investors behave differently when the market condition changes and different market

volatility patterns are observed. In this paper, within the HAM framework, we model

the asymmetric behaviour of agents when market is in different condition and examine

the impact of asymetric belief on the market price dynamics, in particular the volatility.

In this paper, we consider a market with one risky asset (such as stock, index or

managed fund) with (ex dividend) price Pt and one risk free asset with fixed gross

rate R ≥ 1. The market consists of heterogeneous belief investors. Without loss of

generality, we consider there are two types of investors, fundamentalists and chartists

(f and c). Similar to Chiarella, He & Hommes (2006), we assume that the risky asset
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price in each period is set via a market maker mechanism upon the aggregate excess

demand Dt = nf,tD
f
t + nc,tD

c
t . However, to avoid possible negative prices, we assume

the adjustment mechanism the market maker is in relative price change rather than the

absolute amount, that is

Pt+1 − Pt

Pt

= S(Dt) = S

 ∑

q∈{f,c}
nq,tD

q
t


 , (1)

where S(·) is an S-shaped function, Dq
t is the excess demand of type q traders at time t

and nq,t is the market fraction of type q traders at time t satisfying nf,t + nc,t = 1.

In terms of the heterogeneous beliefs, we assume that fundamentalists know the

fundamental information of the risky asset, such as the fundamental price. They believe

that the price may be away from the fundamental value for a while but in long term, the

price will revert to its fundamental. So their demand is based on the spread between the

actual price Pt and the fundamental price Ft, which can be expressed as Df
t = α(Ft−Pt)

where α > 0.

In contrast, the chartists do not have the fundamental information. They prefer

cheaper thumb strategies by believing that the charting signals from the past price

can be used to forecast the future price movements. In this paper, the price trend

for the chartists is assumed to be expressed by the weighted historical prices, that is

P̂t = (1− ω)Pt−1 + ωPt−2, where ω ∈ [0, 1] represents the coefficient of the retracement

strategy. Thus a trading signal to the chartists is defined as δt = Pt − P̂t. When δt > 0,

the chartists believe that the price is in an increasing trend and hence they want to

hold a long position; otherwise, they will take a short position. Specifically, the demand

of the chartists can be written as Dc
t = g(δt). Here g is usually assumed to be an S-

shaped function, for example g(x) = u tanh(vx)(u > 0, v > 0). Note that under the

assumption, g(·) is symmetric and lim
x→±∞

|g(x)| = u < ∞, which means that the actions

of the chartists to both the positive and negative trading signals are completely equally

reverse operations and the chartists are cautious when the price difference δt is large

(either positive or negative), but not very cautious. Given that the chartists are less

informed, they become less confident and cautious when there are big price difference in

general. To characterize such behaviour, we assume that the function g has the following

general properties: ∃x∗1 < 0, x∗2 > 0 such that

g(0) = 0, xg(x) > 0 for x 6= 0, (2a)

g′(x) > 0 for x∗1 < x < x∗2; g′(x) < 0 for x < x∗1 or x > x∗2, (2b)

lim
x→x∗1

g(x) = gl < +∞, lim
x→x∗2

g(x) = gu > −∞. (2c)

In particular, in this paper, we take g(x) = ax
1+bx+c2x2 , where a > 0, c > 0, b ∈ (−2c, 2c),

which satisfies the characteristics in (2). Here b measures the asymmetry of the chartists’

response to changes of x, especially when b < 0(> 0), the chartists believe a bullish
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(bearish) market. The parameter |x∗1,2| = 1/c represents the confident level and if the

absolute change of the price is beyond 1/c, then the chartists become cautious by reducing

their positions.

Similar to Brock & Hommes (1997), we consider traders can change their strategies

based on a weighted average of net realized profit

Uq,t = (Pt + yt −RPt−1)D
q
t−1 − Cq + ηUq,t−1, q ∈ {f, c},

where Cq ≥ 0 is the cost type q investors should pay for their investment, {yt} is the

dividend process of risky asset and the parameter η ∈ [0, 1) represents the memory of

the cumulated fitness function. Then the updated fraction nq,t is given by the discrete

choice probability nq,t = eβUq,t/Nt, where Nt =
∑

q∈Q eβUq,t and the parameter β(≥ 0) is

the sensitivity of performance measuring on how fast the fractions of the different type

agents in the market switch each other. Summarizing the above analysis and letting

C = Cf − Cc and Ut = Uf,t − Uc,t, then we obtain the following model





Pt+1 = Pt

[
1 + S

(
eβUt

eβUt + 1
α(Ft − Pt) +

1
eβUt + 1

g(Pt − (1− ω)Pt−1 − ωPt−2)
) ]

Ut+1 = (Pt+1 + yt+1 −RPt)
[
α(Ft − Pt)− g

(
Pt − (1− ω)Pt−1 − ωPt−2

)]− C + ηUt.

(3)

In this paper, we first use stability and bifurcation theory of nonlinear dynamical

systems to analyze (3) with constant fundamental price and dividend and to examine

the stability of the fundamental steady state. Over the last two decades, economists

have become familiar with period doubling and Hopf bifurcations. These are examples

of codimension one bifurcations. Economic applications of bifurcations of codimension

two or higher are rare due to the fact that they are more difficult to handle, except Ben-

habib, Schmitt-Grohé & Uribe (2001) and Gaunersdorfer, Hommes & Wagener (2006).

In this paper, we find some important codimension two bifurcations of the model, such

as generalized flip bifurcation, Chenciner bifurcation and 1 : q-resonance (q = 2, 3, 4). A

codimension two bifurcation is a generic phenomenon when two parameters are varied

simultaneously. In our paper, we emphasize particularly on the effect of the extrapo-

lation rates of the fundamentalists and chartists (α and a) and asymmetric belief and

confidential level of the chartists (b and c).

By analyzing the linear and nonlinear parts of system (3), we explicitly give a suffi-

cient condition of generalized flip bifurcation, Chenciner bifurcation and 1 : q-resonance.

From those explicit criteria, we find that the extrapolation rates of the fundamentalists

and chartists determine the stability of the fundamental steady state. However, the

asymmetric belief (b) and confidential level (1/c) of the chartists play a very important

role on how the stability of the fundamental equilibrium is broken. For example, when

the chartists are symmetric about bullish and bearish market conditions (b = 0) or they

are so confident (1/c sufficiently large), then there is no Chenciner bifurcation. In other

words, a stable fundamental steady state and a stable invariant circle cannot coexist.
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However, when the chartists have a bullish belief (b < 0) or bearish belief (b > 0), price

fluctuation may increase and the market may move to the stable fundamental value or

a stable invariant cycle depending on the initial value.

One of the important findings of codimension two bifurcations for our evolutionary

learning model is that, close to a bifurcation value, there is an open region in the param-

eter space where a stable fundamental steady state and another stable attractor, such

as an invariant circle or a period-two cycle, coexist. In this region, the price dynamics

depend on the initial states of the system. Such a region is called a “volatility cluster-

ing region” according to Gaunersdorfer, Hommes & Wagener (2006). In addition, some

codimension two bifurcations like 1 : q-resonance lead to complex phenomena and even

chaos, which have potential to explain some stylized facts in financial markets.

Through stochastic simulation, we show that the statistical results of the correspond-

ing stochastic model reflect closely the stylized features observed in financial markets,

including volatility clustering, high kurtosis, and the long-range dependence of asset

returns.
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